[1] ABBAS M, ALQAHTANI MS, ALHIFZI R. Recent Developments in Polymer Nanocomposites for Bone Regeneration. Int J Mol Sci. 2023;24(4):3312.
[2] ZHANG T, GAO Y, CUI W, et al. Nanomaterials-based Cell Osteogenic Differentiation and Bone Regeneration. Curr Stem Cell Res Ther. 2021;16(1):36-47.
[3] HAMMOUCHE S, HAMMOUCHE D, MCNICHOLAS M. Biodegradable bone regeneration synthetic scaffolds: in tissue engineering. Curr Stem Cell Res Ther. 2012;7(2):134-142.
[4] SU Y, ZHANG B, SUN R, et al. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv. 2021;28(1): 1397-1418.
[5] QIAN Y, ZHOU X, ZHANG F, et al. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration. ACS Appl Mater Interfaces. 2019;11(41):37381-37396.
[6] SONG JE, LEE DH, KHANG G, et al. Accelerating bone regeneration using poly(lactic-co-glycolic acid)/hydroxyapatite scaffolds containing duck feet-derived collagen. Int J Biol Macromol. 2023;229:486-495.
[7] LIANG C, LUO Y, YANG G, et al. Graphene Oxide Hybridized nHAC/PLGA Scaffolds Facilitate the Proliferation of MC3T3-E1 Cells. Nanoscale Res Lett. 2018;13(1):15.
[8] BOGDANOVIĆ G, DJORDJEVIĆ A. Carbon nanomaterials: Biologically active fullerene derivatives. Srp Arh Celok Lek. 2016;144(3-4):222-231.
[9] FU C, BAI H, ZHU J, et al. Enhanced cell proliferation and osteogenic differentiation in electrospun PLGA/hydroxyapatite nanofibre scaffolds incorporated with graphene oxide. PLoS One. 2017;12(11):e0188352.
[10] ZHANG Z, QI Z, KONG W, et al. Applications of MXene and its modified materials in skin wound repair. Front Bioeng Biotechnol. 2023;11:1154301.
[11] FU C, JIANG Y, YANG X, et al. Mussel-Inspired Gold Nanoparticle and PLGA/L-Lysine-g-Graphene Oxide Composite Scaffolds for Bone Defect Repair. Int J Nanomedicine. 2021;16:6693-6718.
[12] FU C, PAN S, MA Y, et al. Effect of electrical stimulation combined with graphene-oxide-based membranes on neural stem cell proliferation and differentiation. Artif Cells Nanomed Biotechnol. 2019;47(1):1867-1876.
[13] FU C, YANG X, TAN S, et al. Enhancing Cell Proliferation and Osteogenic Differentiation of MC3T3-E1 Pre-osteoblasts by BMP-2 Delivery in Graphene Oxide-Incorporated PLGA/HA Biodegradable Microcarriers. Sci Rep. 2017;7(1): 12549.
[14] QI Z, GUO W, ZHENG S, et al. Enhancement of neural stem cell survival, proliferation and differentiation by IGF-1 delivery in graphene oxide-incorporated PLGA electrospun nanofibrous mats. RSC Adv. 2019;9(15):8315-8325.
[15] REN X, LIU Q, ZHENG S, et al. Synergistic delivery of bFGF and BMP-2 from poly(l-lactic-co-glycolic acid)/graphene oxide/hydroxyapatite nanofibre scaffolds for bone tissue engineering applications. RSC Adv. 2018;8(56): 31911-31923.
[16] BAHAR H, BENAYAHU D, YAFFE A, et al. Molecular signaling in bone regeneration. Crit Rev Eukaryot Gene Expr. 2007;17(2):87-101.
[17] D’ ESTE M, EGLIN D, ALINI M, et al. Bone regeneration with biomaterials and active molecules delivery. Curr Pharm Biotechnol. 2015;16(7):582-605.
[18] LI Q, WANG Z. Involvement of FAK/P38 Signaling Pathways in Mediating the Enhanced Osteogenesis Induced by Nano-Graphene Oxide Modification on Titanium Implant Surface. Int J Nanomedicine. 2020;15:4659-4676.
[19] HEO SY, KO SC, OH GW, et al. Fabrication and characterization of the 3D-printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration. J Biomed Mater Res B Appl Biomater. 2019;107(6):1937-1944.
[20] TAKEUCHI A, OHTSUKI C, KAMITAKAHARA M, et al. Biomimetic deposition of hydroxyapatite on a synthetic polypeptide with beta sheet structure in a solution mimicking body fluid. J Mater Sci Mater Med. 2008;19(1):387-393.
[21] TORRICELLI P, FINI M, GIAVARESI G, et al. Bone tissue cultures: an in vitro model for the evaluation of bone defect healing after L-arginine and L-lysine administration. Artif Cells Blood Substit Immobil Biotechnol. 2001;29(4):325-334. |