[1] SHI C, WU T, HE Y, et al. Recent advances in bone-targeted therapy. Pharmacol Ther. 2020;207:107473.
[2] ZHAO W, ZHAO Y, WANG Q, et al. Remote Light-Responsive Nanocarriers for Controlled Drug Delivery: Advances and Perspectives. Small. 2019;15(45):e1903060.
[3] WEI H, CUI J, LIN K, et al. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res. 2022; 10(1):17.
[4] YANG Y, AW J, XING B. Nanostructures for NIR light-controlled therapies. Nanoscale. 2017;9(11):3698-3718.
[5] YANG Y, VELMURUGAN B, LIU X, et al. NIR photoresponsive crosslinked upconverting nanocarriers toward selective intracellular drug release. Small. 2013;9(17):2937-2944.
[6] ZHANG Y, HUANG L, LI Z, et al. Illuminating Cell Signaling with Near-Infrared Light-Responsive Nanomaterials. ACS Nano. 2016;10(4): 3881-3885.
[7] REDL FX, CHO KS, MURRAY CB, et al. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature. 2003;423(6943):968-971.
[8] GAO X, CUI Y, LEVENSON RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8): 969-976.
[9] LOPES CB, PACHECO MT, SILVEIRA L JR, et al. The effect of the association of NIR laser therapy BMPs, and guided bone regeneration on tibial fractures treated with wire osteosynthesis: Raman spectroscopy study. J Photochem Photobiol B. 2007;89(2-3):125-130.
[10] CHATTERJEE DK, RUFAIHAH AJ, ZHANG Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials. 2008;29(7):937-943.
[11] RUDNICK-GLICK S, COREM-SALKMON E, GRINBERG I, et al. Targeted drug delivery of near IR fluorescent doxorubicin-conjugated poly(ethylene glycol) bisphosphonate nanoparticles for diagnosis and therapy of primary and metastatic bone cancer in a mouse model. J Nanobiotechnology. 2016;14(1):80.
[12] LIN H, GAO S, DAI C, et al. A Two-Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows. J Am Chem Soc. 2017;139(45):16235-16247.
[13] WANG X, SHAO J, ABD EL RAOUF M, et al. Near-infrared light-triggered drug delivery system based on black phosphorus for in vivo bone regeneration. Biomaterials. 2018;179:164-174.
[14] TONG L, LIAO Q, ZHAO Y, et al. Near-infrared light control of bone regeneration with biodegradable photothermal osteoimplant. Biomaterials. 2019;193:1-11.
[15] FU J, LIU X, TAN L, et al. Photoelectric-Responsive Extracellular Matrix for Bone Engineering. ACS Nano. 2019;13(11):13581-13594.
[16] MENG X, WANG X, CHENG Z, et al. Photoluminescence Lifetime of Black Phosphorus Nanoparticles and Their Applications in Live Cell Imaging. ACS Appl Mater Interfaces. 2018;10(37):31136-31145.
[17] PERUMAL V, SIVAKUMAR PM, ZARRABI A, et al. Near infra-red polymeric nanoparticle based optical imaging in Cancer diagnosis. J Photochem Photobiol B. 2019;199:111630.
[18] HE X, YANG X, LI D, et al. Red and NIR Light-Responsive Polymeric Nanocarriers for On-Demand Drug Delivery. Curr Med Chem. 2020; 27(23):3877-3887.
[19] CHEN H, ZHAO Y. Applications of Light-Responsive Systems for Cancer Theranostics. ACS Appl Mater Interfaces. 2018;10(25):21021-21034.
[20] OLEJNICZAK J, CARLING CJ, ALMUTAIRI A. Photocontrolled release using one-photon absorption of visible or NIR light. J Control Release. 2015;219:18-30.
[21] WAN Z, ZHANG P, LV L, et al. NIR light-assisted phototherapies for bone-related diseases and bone tissue regeneration: A systematic review. Theranostics. 2020;10(25):11837-11861.
[22] SON J, YI G, YOO J, et al. Light-responsive nanomedicine for biophotonic imaging and targeted therapy. Adv Drug Deliv Rev. 2019;138:133-147.
[23] 徐静,吕慧欣,鲍鑫,等.近红外光响应水凝胶在组织工程领域的应用[J].中国组织工程研究,2024,28(3):486-492.
[24] CHOI HS, FRANGIONI JV. Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol Imaging.2010;9(6):291-310.
[25] HUANG K, WU J, GU Z. Black Phosphorus Hydrogel Scaffolds Enhance Bone Regeneration via a Sustained Supply of Calcium-Free Phosphorus. ACS Appl Mater Interfaces. 2019;11(3):2908-2916.
[26] GUI N, XU W, MYERS DE, et al. The effect of ordered and partially ordered surface topography on bone cell responses: a review. Biomater Sci. 2018;6(2):250-264.
[27] KULKARNI M, MAZARE A, GONGADZE E, et al. Titanium nanostructures for biomedical applications. Nanotechnology. 2015;26(6):062002.
[28] WU B, TANG Y, WANG K, et al. Nanostructured Titanium Implant Surface Facilitating Osseointegration from Protein Adsorption to Osteogenesis: The Example of TiO(2) NTAs. Int J Nanomedicine. 2022;17:1865-1879.
[29] LOU Y, SUN M, ZHANG J, et al. Ultraviolet Light-Based Micropattern Printing on Titanium Surfaces to Promote Early Osseointegration. Adv Healthc Mater. 2023;12(21):e2203300.
[30] HUANG P, XU J, XIE L, et al. Improving hard metal implant and soft tissue integration by modulating the “inflammatory-fibrous complex” response. Bioact Mater. 2023;20:42-52.
[31] MOSSER DM, EDWARDS JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958-969.
[32] LAWRENCE T, NATOLI G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11(11):750-761.
[33] DAI X, HENG BC, BAI Y, et al. Restoration of electrical microenvironment enhances bone regeneration under diabetic conditions by modulating macrophage polarization. Bioact Mater. 2021;6(7):2029-2038.
[34] BAI L, ZHAO Y, CHEN P, et al. Targeting Early Healing Phase with Titania Nanotube Arrays on Tunable Diameters to Accelerate Bone Regeneration and Osseointegration. Small. 2021;17(4):e2006287.
[35] NIE R, SUN Y, LV H, et al. 3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models. Nanoscale. 2022;14(22):8112-8129.
[36] LIU Z, DING H, QI L, et al. Core-Shell NiS@SrTiO(3) Nanorods on Titanium for Enhanced Osseointegration via Programmed Regulation of Bacterial Infection, Angiogenesis, and Osteogenesis. ACS Appl Mater Interfaces. 2023. doi: 10.1021/acsami.3c11995.
[37] WU Y, LIAO Q, WU L, et al. ZnL(2)-BPs Integrated Bone Scaffold under Sequential Photothermal Mediation: A Win-Win Strategy Delivering Antibacterial Therapy and Fostering Osteogenesis Thereafter. ACS Nano. 2021;15(11):17854-17869.
[38] YUAN B, ZHOU X, LI Y, et al. Black-Phosphorus-Nanosheet-Reinforced Coating of Implants for Sequential Biofilm Ablation and Bone Fracture Healing Acceleration. ACS Appl Mater Interfaces. 2022;14(41):47036-47051.
[39] CAI X, XU T, DING R, et al. Oxygen self-supplying small size magnetic nanoenzymes for synergistic photodynamic and catalytic therapy of breast cancer. Nanoscale. 2024;16(8):4095-4104.
[40] SOUZA BMN, MIÑÁN AG, BRAMBILLA IR, et al. Effects of antimicrobial photodynamic therapy with photodithazine® on methicillin-resistant Staphylococcus aureus (MRSA): Studies in biofilms and experimental model with Galleria mellonella. J Photochem Photobiol B. 2024;252:112860.
[41] ZHAO Y, LU R, WANG X, et al. Visible light-induced antibacterial and osteogenic cell proliferation properties of hydrogenated TiO(2) nanotubes/Ti foil composite. Nanotechnology. 2021;32(19):195101.
[42] HUANG B, TAN L, LIU X, et al. A facile fabrication of novel stuff with antibacterial property and osteogenic promotion utilizing red phosphorus and near-infrared light. Bioact Mater. 2019;4(1):17-21.
[43] HE D, ZHANG X, YAO X, et al. In vitro and in vivo highly effective antibacterial activity of carbon dots-modified TiO(2) nanorod arrays on titanium. Colloids Surf B Biointerfaces. 2022;211:112318.
[44] MA K, LIAO C, HUANG L, et al. Electrospun PCL/MoS(2) Nanofiber Membranes Combined with NIR-Triggered Photothermal Therapy to Accelerate Bone Regeneration. Small. 2021;17(51):e2104747.
[45] LI W, LI S, ZHANG J, et al. Fabrication and evaluation of bone morphogenetic protein-2 microspheres coated black phosphorus nanosheets@polylactic-glycolic acid copolymers scaffold: A multifunctional antibacterial photothermal scaffold for bone regeneration. Int J Biol Macromol. 2022;210:350-364.
[46] CHEN J, SHI ZD, JI X, et al. Enhanced osteogenesis of human mesenchymal stem cells by periodic heat shock in self-assembling peptide hydrogel. Tissue Eng Part A. 2013;19(5-6):716-728.
[47] JING X, XU C, SU W, et al. Photosensitive and Conductive Hydrogel Induced Innerved Bone Regeneration for Infected Bone Defect Repair. Adv Healthc Mater. 2023;12(3):e2201349.
[48] WANG Y, HU X, ZHANG L, et al. Bioinspired extracellular vesicles embedded with black phosphorus for molecular recognition-guided biomineralization. Nat Commun. 2019;10(1):2829.
[49] KAJIYA H, KATSUMATA Y, SASAKI M, et al. Photothermal stress triggered by near-infrared-irradiated carbon nanotubes up-regulates osteogenesis and mineral deposition in tooth-extracted sockets. Int J Hyperthermia. 2015;31(6):635-642.
[50] ZHANG X, CHENG G, XING X, et al. Near-Infrared Light-Triggered Porous AuPd Alloy Nanoparticles To Produce Mild Localized Heat To Accelerate Bone Regeneration. J Phys Chem Lett. 2019;10(15): 4185-4191.
[51] DONG S, ZHANG Y, MEI Y, et al. Researching progress on bio-reactive electrogenic materials with electrophysiological activity for enhanced bone regeneration. Front Bioeng Biotechnol. 2022;10:921284.
[52] TANG Y, WANG K, WU B, et al. Photoelectrons Sequentially Regulate Antibacterial Activity and Osseointegration of Titanium Implants. Adv Mater. 2024;36(2):e2307756.
[53] LONG X, DUAN L, WENG W, et al. Light-induced osteogenic differentiation of BMSCs with graphene/TiO(2) composite coating on Ti implant. Colloids Surf B Biointerfaces. 2021;207:111996.
[54] TIWARI JN, SEO YK, YOON T, et al. Accelerated Bone Regeneration by Two-Photon Photoactivated Carbon Nitride Nanosheets. ACS Nano. 2017;11(1):742-751.
[55] SANCHEZ-CASANOVA S, MARTIN-SAAVEDRA FM, ESCUDERO-DUCH C,
et al. Local delivery of bone morphogenetic protein-2 from near infrared-responsive hydrogels for bone tissue regeneration. Biomaterials. 2020;241:119909.
[56] WAN Z, DONG Q, GUO X, et al. A dual-responsive polydopamine-modified hydroxybutyl chitosan hydrogel for sequential regulation of bone regeneration. Carbohydr Polym. 2022;297:120027.
[57] GURUNATHAN S, KIM JH. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. Int J Nanomedicine. 2016;11:1927-1945.
[58] FADEEL B, GARCIA-BENNETT AE. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev. 2010;62(3):362-374.
[59] LIU Y, BHATTARAI P, DAI Z, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev. 2019;48(7):2053-2108. |