中国组织工程研究 ›› 2017, Vol. 21 ›› Issue (34): 5532-5537.doi: 10.3969/j.issn.2095-4344.2017.34.020

• 生物材料模型构建 biomaterial modeling • 上一篇    下一篇

生物可降解血管支架的血流动力学数值模拟

张业鹏1,周  敏2,汤文浩1
  

  1. 1东南大学医学院,江苏省南京市  210009;2南京大学附属鼓楼医院血管外科,江苏省南京市  210008
  • 收稿日期:2017-07-01 出版日期:2017-12-08 发布日期:2018-01-04
  • 通讯作者: 汤文浩,教授,东南大学医学院,江苏省南京市 210009;东南大学附属中大医院普外科,江苏省南京市 210009
  • 作者简介:张业鹏,男,1992年生,山东省蓬莱市人,汉族,东南大学医学院在读硕士,主要从事外科学(血管外科)研究。
  • 基金资助:

    江苏省科技厅社会发展重点项目(BE2015603);南京市医技发展“杰出青年”项目(JQX14002);南京市医技发展一般项目(YKK16080)

Numerical simulation of hemodynamics in a bioresorbable vascular scaffold

Zhang Ye-peng1, Zhou Min2, Tang Wen-hao1
  

  1. 1Southeast University Medical School, Nanjing 210009, Jiangsu Province, China; 2Department of Vascular Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
  • Received:2017-07-01 Online:2017-12-08 Published:2018-01-04
  • Contact: Tang Wen-hao, Professor, Southeast University Medical School, Nanjing 210009, Jiangsu Province, China
  • About author:Zhang Ye-peng, Studying for master’s degree, Southeast University Medical School, Nanjing 210009, Jiangsu Province, China
  • Supported by:
    the Social Development Project of Jiangsu Provincial Science and Technology Department, No. BE2015603; the Medical Technology Development for the Excellent Youth in Nanjing City, No. JQX14002; the General Program of Nanjing Medical Technology Development, No. YKK16080

摘要:

文章快速阅读:

 

文题释义:
新型生物可降解血管支架:由生物可降解或可吸收材料制成,具有良好的组织相容性和生物降解性,在血管狭窄部位植入可降解支架后,既可在前期有效扩张血管又可被逐渐降解,降解产物可通过代谢排出体外或被人体吸收而不影响远期血管功能。
血流动力学:是以血液的流动和血管的变形为研究对象,研究支架植入后血流和血管壁面剪应力分布情况的基本手段之一,利用计算流体动力学方法模拟血管支架部位的血流性质。
 
背景:支架的植入不仅会引起血管的适应性改变,而且会造成支架段血管内血流动力学的变化,包括血管壁面剪应力和扰动流的产生等。
目的:利用数值模拟的方法对支架段血管的血流动力学进行评估,为支架结构设计的优化提供理论依据。
方法:通过三维建模、血管支架耦合、网格划分、设定边界条件等方法实现对支架段血管的血流动力学进行模拟研究,评估并比较6种不同支架模型的壁面剪应力变化趋势。
结果与结论:每个点的壁面剪应力随时间变化规律与入口速度的变化规律基本一致,各点的壁面剪应力随着入口速度的增大而增大,当入口速度达到峰值,各点的壁面剪应力也达到或接近峰值;随着入口速度的减小而减小,当入口速度达到谷值时,各点的壁面剪应力也达到或接近谷值,此变化规律不受支架模型结构变化的影响。同一个支架模型中,各点壁面剪应力的最小值均小于0.5 Pa,它们在每个心脏周期内低于0.5 Pa的时间长短不等。不同支架模型中,由于支架结构的不同,每个心脏周期内壁面剪应力低于0.5 Pa的点数量不等。结果表明,壁面某个点的血管壁面剪应力与入口速度呈正相关,在一个心动周期某些时刻,支架段内出现壁面剪应力低于0.5 Pa的区域为内膜增生易发区,应尽量减少这种低壁面剪应力的区域。

关键词: 生物材料, 材料相容性, 血管介入治疗, 生物可降解血管支架, 血流动力学, 数值模拟, 壁面剪应力

Abstract:

BACKGROUND: Stent implantation cannot only cause an adaptive change of blood vessels, but also result in intravascular hemodynamic changes, including vascular wall shear stress and disturbance flow.
OBJECTIVE: To provide a theoretical basis for optimizing the stent design based on hemodynamics evaluation of the stented blood vessel by numerical simulation.
METHODS: Hemodynamics of the stented vessels were simulated by three-dimensional modeling, vessel-stent coupling, mesh partioning, boundary conditions setting. Then the trends of wall shear stress on six different vascular stent models were assessed and compared.
RESULTS AND CONCLUSION: The wall shear stress had the changing trend consistent with the inlet velocity. The wall shear stress was increased or decreased with the increase of decrease of inlet velocity, and reached or became close to the valley value when the inlet velocity was at valley value. This change rule was not affected by the structural change of the stent model. In the same stent model, the minimum wall shear stress at each point was less than 0.5 Pa, and these minimum values < 0.5 Pa lasted for different time in each cardiac cycle. In different stent models, the amount of points where the wall shear stress was less than 0.5 Pa in different cardiac cycles were in variety. To conclude, the wall shear stress at a point of the wall is positively correlated with the inlet velocity. During a cardiac cycle, at some time points, intimal hyperplasia is prone to occur in the region with the wall shear stress less than 0.5 Pa. Therefore, we should try to minimize the low wall shear stress region.

Key words: Graft Occlusion, Vascular, Hemodynamics, Tissue Engineering

中图分类号: