中国组织工程研究 ›› 2016, Vol. 20 ›› Issue (38): 5684-5690.doi: 10.3969/j.issn.2095-4344.2016.38.009

• 材料生物相容性 material biocompatibility • 上一篇    下一篇

磁性四氧化三铁纳米颗粒作用于前成骨细胞的生物相容性

官晨雨,侯世达,周  洋,曾融生
  

  1. 中山大学光华口腔医学院•附属口腔医院口腔颌面外科,广东省口腔医学重点实验室,广东省广州市  510055
  • 收稿日期:2016-07-08 出版日期:2016-09-16 发布日期:2016-09-16
  • 通讯作者: 曾融生,硕士,博士生导师,主任医师,中山大学附属口腔医院口腔颌面外科,广东省广州市 510055
  • 作者简介:官晨雨,女,1989年生,福建省南平市人,汉族,中山大学在读硕士,主要从事口腔颌面外科学的基础与临床研究。
  • 基金资助:
    国家自然科学基金(81070818)

Biocompatibility of magnetic ferrosoferric oxide nanoparticles in preosteoblasts

Guan Chen-yu, Hou Shi-da, Zhou Yang,Zeng Rong-sheng
  

  1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong Province, China
  • Received:2016-07-08 Online:2016-09-16 Published:2016-09-16
  • Contact: Zeng Rong-sheng, Master, Doctoral supervisor, Chief physician, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong Province, China
  • About author:Guan Chen-yu, Studying for master’s degree, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong Province, China
  • Supported by:
    the National Natural Science Foundation of China, No. 81070818

摘要:

文章快速阅读:

 

文题释义:
磁性纳米颗粒
:为一种纳米尺度的粒子,一般由铁、钴、镍等金属氧化物组成,具有别于一般纳米材料的特殊磁响应性,即在外加磁场作用下,可定向移动或吸收交变磁场电磁波产热等。近年来,由于其特殊的纳米特性及磁响应性,在医疗领域中,如MRI造影增强剂、磁感应热疗及基因转染等方面广为运用。
纳米毒性:纳米颗粒作用于机体或细胞后,影响机体器官及相关生理功能,在细胞层面,可引起细胞膜或细胞骨架结构损伤,细胞的新陈代谢过程,细胞组分或产物的合成、降解或释放,离子调控及细胞分裂等过程,导致细胞存活、增殖和或功能的紊乱,所引发的不良反应。

背景:将磁性纳米颗粒作为骨组织工程领域新兴材料并植入生物体时,其毒性机制基础研究及安全性评价就显得格外重要。
目的:探索磁性四氧化三铁纳米颗粒作用于前成骨细胞的生物相容性。
方法:将含有0,200,400,800 mg/L磁性四氧化三铁纳米颗粒的细胞培养液作用于小鼠前成骨细胞24 h后,采用碱性磷酸酶活性测试试剂盒、骨钙素酶联免疫试剂盒、CCK-8试剂盒、倒置显微镜、细胞骨架荧光染色法及实时荧光定量PCR,观察处理后小鼠前成骨细胞的碱性磷酸酶活性/总蛋白比值、骨钙素浓度、细胞增殖率、细胞形态和骨架改变、细胞凋亡以及自噬相关半胱氨酸蛋白酶3、LC3A、LC3B基因mRNA表达情况。
结果与结论:①磁性四氧化三铁纳米颗粒作用小鼠前成骨细胞24 h后,200 mg/L组与对照组(0 mg/L)相比,各项指标差异无显著性意义;②作用24 h后,400,800 mg/L组细胞内碱性磷酸酶活性/总蛋白比值、骨钙素浓度上升,细胞增殖率明显下降,细胞形态及骨架结构改变明显,LC3B基因转录水平升高,而半胱氨酸蛋白酶3、LC3A基因转录水平与对照组相比差异无显著性意义;③结果提示,高质量浓度的磁性四氧化三铁纳米颗粒作用于小鼠前成骨细胞24 h后,虽具有一定的促成骨作用,但同时可造成细胞毒性损伤,促进细胞自噬相关基因LC3B表达上调,影响细胞形态、骨架结构及细胞增殖率。

关键词: 生物材料, 纳米材料, 磁性四氧化三铁纳米颗粒, 前成骨细胞, 生物材料与纳米技术, 生物相容性, 成骨分化, 矿化, 细胞毒性, 国家自然科学基金

Abstract:

BACKGROUND: Investigations on toxic mechanism and safety of magnetic ferrosoferric oxide (Fe3O4) nanoparticles are extremely necessary when these nanoparticles as an emerging material for bone tissue engineering are implanted into the living body.
OBJECTIVE: To investigate the biocompatibility of magnetic Fe3O4 nanoparticles with preosteoblasts.
METHODS: Mouse preosteoblasts were cultured in 0, 200, 400, 800 mg/L magnetic Fe3O4 nanoparticles. After 24 hours, alkaline phosphatase activity, osteocalcin level, cell proliferation rate, cellular morphology, cytoskeleton variation, cell apoptosis and autophagy-related genes, such as Caspase-3, LC3A, LC3B, were detected by alkaline phosphatase assay kit, ELISA kit, cell counting kit-8 kit, inverted microscope, laser confocal microscopy and real-time PCR, respectively.
RESULTS AND CONCLUSION: After 24 hours of culture, there ware no significant differences between 200 mg/L group and control group. However, in the groups of 400 and 800 mg/L, the ratio of alkaline phosphatase activity to total protein and osteocalcin level increased, the cell proliferation rate decreased, cellular morphology and cytoskeleton changed remarkably, LC3B expression was up-regulated compared with the control group. Additionally, there were also no significant differences in the expression of Caspase-3 and LC3A between 400 and 800 mg/L groups and control group. Therefore, magnetic Fe3O4 nanoparticles at high level contributes to cytotoxicity and up-regulation of LC3B expression, and affects cellular morphology, cytoskeleton and cell proliferation rate, although these nanoparticles can increase the osteoblastic differentiation.   

Key words: Ferrosoferric Oxide, Nanocomposites, Osteoblasts, Biocompatible Materials, Tissue Engineering

中图分类号: