[1] Schliephake H,Weich HA,Dullin C,et al.Mandibular bone repair by implantation of rhBMP-2 in a slow release carrier of polylactic acid—an experimental study in rats. Biomaterials. 2008;29(1): 103-110.
[2] Jang JH,Castano O,Kim HW.Electrospun materials as potential platforms for bone tissue engineering.Adv Drug Deliver Rev. 2009;61(12):1065-1083.
[3] Guarino V,Ambrosio L.Temperature-driven processing techniques for manufacturing fully interconnected porous scaffolds in bone tissue engineering.Proc Inst Mech Eng H. 2010;224(12):1389-1400.
[4] 毛恩亮,戴红莲,雷军,等.热致相分离/粒子滤出法制备多孔支架的研究[J].武汉理工大学学报,2010,32(12):15-18.
[5] 赵娜如,康海峰,魏煊,等.原位凝固成型法制备可控孔隙结构的多孔β-磷酸三钙陶瓷[J].硅酸盐学报,2010,38(12):2314-2318.
[6] Olsson M.Chemical stability of grain boundariesin β-tricalcium phosphate ceramics: β-TCP as bone substitute material. Studentuppsats (Examensarbete).2012:11-30.
[7] Tagil M.Bone Substitutes,Grafts and Cement.Distal Radius Fractures. Springer.2014:233-239.
[8] Bohner M,Galea L,Doebelin N.Calcium phosphate bone graft substitutes: Failures and hopes.J Eur Ceram Soc.2012; 32(11): 2663-2671.
[9] Bohner M.Design of ceramic-based cements and putties for bone graft substitution. Eur Cell Mater.2010;20(1):3-10.
[10] Sariibrahimoglu K,Wolke JG,Leeuwenburgh SC,et al. Characterization of α/β-TCP Based Injectable Calcium Phosphate Cement as a Potential Bone Substitute.Key Eng Mater.2013;529:157-160.
[11] Sugawara A,Asaoka K,Ding SJ.Calcium phosphate-based cements: clinical needs and recent progress.J Mater Chem. 2013;1(8):1081-1089.
[12] Butscher A,Bohner M,Hofmann S,et al.Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing .Acta Biomaterialia. 2011;7(3): 907-920.
[13] Bose S,Vahabzadeh S,Bandyopadhyay A.Bone tissue engineering using 3D printing. Mater Today. 2013;16(12): 496-504.
[14] Ribeiro G,Trommer RM,dos Santos LA,et al.Novel method to produce β-TCP scaffolds.Mater Lett.2011;65(2):275-277.
[15] Karageorgiou V,Kaplan D.Porosity of 3D biomaterial scaffolds and osteogenesis.Biomaterials.2005;26(27):5474-5491.
[16] Miranda P,Pajares A,Saiz E,et al.Fracture modes under uniaxial compression in hydroxyapatite scaffolds fabricated by robocasting. J Biomed Mater Res A.2007; 83(3): 646-655.
[17] Miranda P,Pajares A,Guiberteau F.Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds.Acta Biomaterialia.2008;4(6): 1715-1724.
[18] Bandyopadhyay A,Petersen J,Fielding G,et al.ZnO, SiO2, and SrO doping in resorbable tricalcium phosphates: Influence on strength degradation, mechanical properties, and in vitro bone–cell material interactions.J Biomed Mater Res B.2012; 100(8):2203-2212.
[19] Olszta MJ,Cheng X,Jee SS,et al.Bone structure and formation: A new perspective. Mater Sci Eng Rev.2007;58(3):77-116.
[20] Carletti E,Motta A,Migliaresi C.Scaffolds for tissue engineering and 3D cell culture.3D cell culture.Springer.2011:17-39.
[21] Warnke PH,Seitz H,Warnke F,et al.Ceramic scaffolds produced by computer‐assisted 3D printing and sintering: Characterization and biocompatibility investigations.J Biomed Mater Res B.2010;93(1):212-217.
[22] Bose S,Tarafder S,Banerjee SS,et al.Understanding in vivo response and mechanical property variation in MgO, SrO and SiO2 doped β-TCP. Bone.2011;48(6): 1282-1290.
[23] Santos CF,Silva AP,Lopes L,et al.Design and production of sintered β-tricalcium phosphate 3D scaffolds for bone tissue regeneration.Mater Sci Eng C.2012;32(5): 1293-1298.
[24] Wu Q,Zhang X,Wu B,et al.Fabrication and characterization of porous HA/β-TCP scaffolds strengthened with micro-ribs structure. Mater Lett.2013;92:274-277.
[25] Best S,Porter A,Thian E,et al.Bioceramics: past, present and for the future. J Eur Ceram Soc.2008;28(7):1319-1327.
[26] 张永光,王志强.骨移植替代材料研究进展[J].中国修复重建外科杂志,2008,22(10): 1264-1268.
[27] Duarte Campos DF,Vogt M,Lindner M,et al.Two-photon laser scanning microscopy as a useful tool for imaging and evaluating macrophage-, IL-4 activated macrophage-and osteoclast-based In Vitro degradation of beta-tricalcium phosphate bone substitute material.Microsc Res Tech. 2014;77(2):143-152.
[28] Bose S,Roy M,Bandyopadhyay A.Recent advances in bone tissue engineering scaffolds.Trends Biotechnol. 2012;30(10): 546-554.
[29] Kapoor S,Batra U,Kohli S.Sintering Effects on Morphology, Thermal Stability and Surface Area of Sol‐Gel Derived Nano‐Hydroxyapatite Powder [C].Proceedings of the INTERNATIONAL CONFERENCE ON ADVANCES IN CONDENSED AND NANO MATERIALS (ICACNM‐2011), AIP Publishing, 2011:375-376.
[30] Feng P,Wei P,Shuai C,et al.Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering. PloS One.2014;9(1):1-13.
[31] Fielding GA,Bandyopadhyay A,Bose S.Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds.Dent Mater.2012;28(2):113-122.
[32] Tarafder S,Balla VK,Davies NM,et al.Microwave‐sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering.J Tissue Eng Regen Med.2013;7(8):631-641.
[33] Shie MY,Ding SJ,Chang HC.The role of silicon in osteoblast-like cell proliferation and apoptosis.Acta Biomaterialia. 2011; 7(6): 2604-2614.
[34] Woodard JR,Hilldore AJ,Lan SK,et al.The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials.2007;28(1):45-54.
[35] Lu L,Zhang Q,Wootton D,et al.Biocompatibility and biodegradation studies of PCL/β-TCP bone tissue scaffold fabricated by structural porogen method.J Mater Sci Mater Med. 2012;23(9):2217-2226.
[36] Miyaji H,Yokoyama H,Kosen Y,et al.Bone augmentation in rat by highly porous β-TCP scaffolds with different open-cell sizes in combination with fibroblast growth factor-2.J Oral Tissue Eng 2013;10(3):172-181.
[37] Bernstein A,Suedkamp N,Mayr HO,et al.Microporous ß-Tricalcium Phosphate (TCP)-A Delivery Vehicle of Growth Factors and Drugs. Key Eng Mater.2014;587:93-96.
[38] Kang Y,Kim S,Bishop J,et al.The osteogenic differentiation of human bone marrow MSCs on HUVEC-derived ECM and β-TCP scaffold.Biomaterials.2012;33(29):6998-7007.
[39] Hao W,Pang L,Jiang M,et al.Skeletal repair in rabbits using a novel biomimetic composite based on adipose-derived stem cells encapsulated in collagen I gel with PLGA-β-TCP scaffold.J Orthop Res.2010;28(2):252-257 |