中国组织工程研究 ›› 2018, Vol. 22 ›› Issue (3): 398-403.doi: 10.3969/j.issn.2095-4344.0037

• 骨与关节生物力学 bone and joint biomechanics • 上一篇    下一篇

高速后碰撞时人体上颈椎的有限元分析

刘映璇,陈凌峰,安美文   

  1. 太原理工大学力学学院,山西省太原市 030024
  • 出版日期:2018-01-28 发布日期:2018-01-28
  • 通讯作者: 安美文,教授,博士生导师,太原理工大学力学学院,山西省太原市 030024
  • 作者简介:刘映璇,男,1994年生,山西省山阴县人,太原理工大学力学学院在读硕士,主要从事生物医学工程方面的研究。
  • 基金资助:

    国家自然科学基金(11372208);山西省研究生教育创新项目(2016BY062)

Finite element analysis of the human upper cervical vertebrae under high-speed post-impact condition

Liu Ying-xuan, Chen Ling-feng, An Mei-wen   

  1. College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
  • Online:2018-01-28 Published:2018-01-28
  • Contact: An Mei-wen, Professor, Doctoral supervisor, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
  • About author:Liu Ying-xuan, Studying for master’s degree, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
  • Supported by:

    the National Natural Science Foundation of China, No. 11372208; the Graduate Education and Innovation Project of Shanxi Province, No. 2016BY062

摘要:

文章快速阅读:


 
文题释义:
上颈椎:人体颈椎骨总共7块,分别为C1到C7,本文选取C1-C4进行建模分析。C1C2因其结构特殊分别称为寰椎和枢椎,C3和C4为普通颈椎。颈椎骨分为皮质骨和松质骨。当然,颈椎不仅包括椎体,还包括椎间盘、韧带、肌肉、小关节等组织。C1和C2之间没有椎间盘,其余椎骨间都有椎间盘。颈椎作为脊骨中体积最小的椎体,它是灵活性最大、活动频率最高、负重较大的部位。
人体颈椎有限元模型:运用有限元建模软件建立的人体颈椎模型能够反映人体颈椎详细的解剖结构,并且可以模拟出颈椎在不同加载条件下的动力学响应和损伤,这是现阶段无法用实验完成的。采用有限元分析方法,是目前比较普遍和成本较低的方法,能够有效的对车辆碰撞事故中的颈部损伤的力学机制进行预测和分析。
 
摘要
背景:高速公路事故逐年上升,最容易受到伤害的便是颈部。有限元分析可以很好的探究颈部损伤的力学机制。目前国内外现阶段更注重模型的优化和低速碰撞工况,少有颈部损伤和颈椎拉压应力之间关系的研究。
目的:探究高速后碰撞下人体颈椎的损伤的力学机制,对颈部损伤时椎骨Von Mises应力和轴向压应力进行对比分析。
方法:建立了一个包括颈椎骨、椎间盘、韧带、肌肉、小关节等组织的人体上颈椎模型。在前碰撞志愿者实验数据的基础上对模型进行了验证。运用有限元方法完成了对高速(80,120,160 km/h)后碰撞下颈椎的动力学响应。
结果与结论:①经过模拟及验证表明,建立的上颈椎模型具有较高的生物仿真度,可以用于颈椎损伤研究及交通事故中各部位损伤的研究;②高速后碰撞下,速度越大,颈椎受到的损伤越严重,C1-C4中C4的应力最大,受到的伤害最大;③用轴向压应力来判断松质骨是否发生破坏要比von-mises应力更有说服力;④在高速后碰撞下,椎骨相互之间发生错位,尤其是超出高速公路限制120 km/h后,椎骨之间错位严重,极有可能出现关节分离和骨折等情况,造成颈椎内部神经等损伤。

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程
ORCID: 0000-0002-4526-0178(刘映璇)

关键词: 颈椎损伤, 高速后碰撞, 骨科植入物, 数字化医学, 有限元, 应力分析, 皮质骨, 松质骨, 骨骼强度, 挥鞭样, 国家自然科学基金

Abstract:

BACKGROUND: Highway accidents increase year by year, and the most vulnerable area is the neck. Finite element analysis can be used to study the mechanical mechanism of cervical injury. Most of researches focus on the optimization of the model and low-speed collision conditions, but the association of neck injury with cervical tension stress is little reported.

OBJECTIVE: To explore the mechanical mechanism of neck injuries caused by traffic accidents, and to compare the von Mises and axial stress of the cervical vertebrae.
METHODS: A cervical spine model including cervical vertebrae, intervertebral disc, ligament, muscle, facet joint was set up. The model was validated based on the experimental data of the former impact volunteers. The dynamic response of the cervical vertebrae was achieved using the finite element method (80, 120, and 160 km/h).
RESULTS AND CONCLUSION: (1) The established upper cervical model had a high biosimulation, which could be used in studies on the cervical injury and each part injury caused by traffic accidents. (2) Under high-speed post-impact condition, the cervical injury became severe with speed increasing, especially C4 level. (3) The axial stress was more available to assess the injury of cancellous bone than von Mises. (4) After high-speed post-impact, the vertebrae diaplaced, especially at 120 km/h, thereby causing articular separation and fracture, further inducing nerve root injury. 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程

Key words: Cervical Vertebrae, Finite Element Analysis, Stress Mechanical, Tissue Engineering

中图分类号: