中国组织工程研究 ›› 2011, Vol. 15 ›› Issue (9): 1562-1565.doi: 10.3969/j.issn.1673-8225.2011.09.011

• 数字化骨科 digital orthopedics • 上一篇    下一篇

应用三维成像和快速成型技术构建犬下颌髁突模型

韩  冬1,徐  华1,董佳生1,沈国雄1,俞哲元1,柴  岗1,艾松涛2   

  1. 上海交通大学医学院附属第九人民医院,1整复外科,2放射科,上海市  200011
  • 收稿日期:2010-12-07 修回日期:2011-01-17 出版日期:2011-02-26 发布日期:2011-02-26
  • 作者简介:韩冬☆,男,1974年生,辽宁省锦州市人,汉族,2004年吉林大学毕业,博士,副主任医师,硕士生导师,主要从事骨再生及手足畸形研究。handong12000@163.com
  • 基金资助:

    国家自然科学基金(30700873)“定制型全功能组织工程下颌支的在体构建及缺损修复的实验研究”。

Construction of cyno-mandibular condyle models using three-dimensional imaging and rapid prototyping technology

Han Dong1, Xu Hua1, Dong Jia-sheng1, Shen Guo-xiong1, Yu Zhe-yuan1, Chai Gang1, Ai Song-tao2   

  1. 1Department of Plastic and Reconstructive Surgery, 2Department of Radiology, Ninth People’s Hospital, Medical School of Shanghai Jiao Tong University, Shanghai  200011, China
  • Received:2010-12-07 Revised:2011-01-17 Online:2011-02-26 Published:2011-02-26
  • About author:Han Dong☆, Doctor, Associate chief physician, Master’s supervisor, Department of Plastic and Reconstructive Surgery, Ninth People’s Hospital, Medical School of Shanghai Jiao Tong University, Shanghai 200011, China handong12000@163.com
  • Supported by:

    the National Natural Science Foundation of China, No. 30700873*

摘要:

背景:颅颌面骨为不规则骨,具有复杂的三维立体结构。对于颅颌面的骨缺损,进行个性化精确修复十分重要。计算机辅助设计、计算机辅助制造和激光扫描技术是近年发展起来的高新技术,通过这些技术可以实现颅颌面个性化骨形态结构的三维仿真。
目的:设计一个由计算机辅助设计、计算机辅助制造和激光扫描技术组成的数字医学系统,以实现生物材料对下颌骨髁突等形态的三维模拟。
方法:通过CT扫描获得犬头颅影像信息,计算机辅助设计、计算机辅助制造实现下颌骨形态的三维重建影像,影像数据输入三维打印机,快速成型获得下颌骨髁突的树脂阳模。阴阳模转换获得相应石膏阴模,聚羟基乙酸/聚乳酸阴模内成型,激光三维表面扫描检测聚羟基乙酸/聚乳酸支架和影像原型匹配的精确度。
结果与结论:聚羟基乙酸/聚乳酸支架和影像原型匹配的精确度检测结果显示,当测试点误差小于1.0 mm时,复合率大于95%。提示通过这套数字医学系统,可实现颅颌面骨形态结构生物材料的三维仿真,为下颌骨骨缺损的精确修复打下基础。

关键词: 计算机辅助设计与制造, 快速成型, 下颌髁突模型, 聚羟基乙酸/聚乳酸, 支架

Abstract:

BACKGROUND: Craniomaxillofacial bone is irregular and has a subtle three-dimensional (3D) structure, and individualized repair of bone defects is very important. Computer-aided design (CAD), computer-aided manufacturing (CAM), rapid prototyping, as well as laser scanning have therefore been applied in craniomaxillofacial surgery.
OBJECTIVE: To develop a novel digital medical support system that enables us to custom-make scaffolds to repair craniomaxillofacial bone defects using CAD/CAM and rapid-prototyping technology.
METHODS: We created positive molds using CT data, CAD/CAM and a rapid prototyping method using 3D printing. Custom-made poly (glycolic acid) (PGA) and polymers poly (lactic acid) (PLA) scaffolds were prefabricated by a positive-negative mold interchange technique. A laser scanning system was used to evaluate the accuracy of the PGA/PLA scaffold.
RESULTS AND CONCLUSION:The mean error was smaller than 0.3 mm and confidence was greater than 95% when the error was smaller than 1 mm. This pilot study suggests that custom-made PGA/PLA scaffolds could accurately reconstruct craniomaxillofacial bone injuries by our digital medical support system.

中图分类号: