[1] LU W, HU C. Molecular biomarkers for gestational diabetes mellitus and postpartum diabetes. Chin Med J (Engl). 2022;135(16):1940-1951.
[2] PINTO S, CROCE L, CARLIER L, et al. Thyroid dysfunction during gestation and gestational diabetes mellitus: a complex relationship. J Endocrinol Invest. 2023;46(9):1737-1759.
[3] UGWUDIKE B, KWOK M. Update on gestational diabetes and adverse pregnancy outcomes. Curr Opin Obstet Gynecol. 2023;35(5):453-459.
[4] POBLETE JA, OLMOS P. Obesity and Gestational Diabetes in Pregnant Care and Clinical Practice. Curr Vasc Pharmacol. 2021;19(2):154-164.
[5] YAN Q, QIU D, LIU X, et al. The incidence of gestational diabetes mellitus among women with polycystic ovary syndrome: a meta-analysis of longitudinal studies. BMC Pregnancy Childbirth. 2022;22(1):370-382.
[6] MELAMED N, AVNON T, BARRETT J, et al. Gestational diabetes in twin pregnancies-a pathology requiring treatment or a benign physiological adaptation? Am J Obstet Gynecol. 2024;231(1):92-104.e4.
[7] LU L, WAN B, SUN M. Mendelian randomization identifies age at menarche as an independent causal effect factor for gestational diabetes mellitus. Diabetes Obes Metab. 2023;25(1):248-260.
[8] PAULSEN CP, BANDAK E, EDEMANN-CALLESEN H, et al. The Effects of Exercise during Pregnancy on Gestational Diabetes Mellitus, Preeclampsia, and Spontaneous Abortion among Healthy Women-A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2023;20(12):6069.
[9] TSAKIRIDIS I, GIOULEKA S, MAMOPOULOS A, et al. Diagnosis and Management of Gestational Diabetes Mellitus: An Overview of National and International Guidelines. Obstet Gynecol Surv. 2021;76(6):367-381.
[10] LU Q, LI Y, YE D, et al. Longitudinal metabolomics integrated with machine learning identifies novel biomarkers of gestational diabetes mellitus. Free Radic Biol Med. 2023;209(Pt 1):9-17.
[11] ZENG B, WEI A, ZHOU Q, et al. Andrographolide: A review of its pharmacology, pharmacokinetics, toxicity and clinical trials and pharmaceutical researches. Phytother Res. 2022;36(1):336-364.
[12] ZHANG S, XIE X, ZHAO J, et al. Andrographolide and its Derivatives in Cardiovascular Disease: A Comprehensive Review. Planta Med. 2025; 91(5):259-270.
[13] NAIK RR, MUNIPALLY PK, NAGARAJU T. Andrographolide reorganise hyperglycaemia and distorted antioxidant profile in streptozotocin-induced diabetic rats. Cardiovasc Hematol Agents Med Chem. 2017; 10(1):26-38,
[14] 武莉,冯吉波,王延茹,等.穿心莲内酯对胰岛素抵抗大鼠的影响及可能作用机制分析[J].中华中医药学刊,2024,5(3):1-13.
[15] CHEN B, NING K, SUN ML, et al. Regulation and therapy, the role of JAK2/STAT3 signaling pathway in OA: a systematic review. Cell Commun Signal. 2023;21(1):67-75.
[16] GU Y, YU S, GU W, et al . M2 macrophage infusion ameliorates diabetic glomerulopathyvia the JAK2/STAT3 pathway in db/db mice. Ren Fail. 2024;46(2):2378210-2378221.
[17] LI CD, ZHAO JY, CHEN JL, et al. Mechanism of the JAK2/STAT3-CAV-1-NR2B signaling pathway in painful diabetic neuropathy. Endocrine. 2019;64(1):55-66.
[18] 魏小敏,王丽丽,刘海霞,等.丹参素通过STAT3/JAK2/SOCS1信号通路在妊娠期糖尿病干预中的作用机制研究[J]. 陕西医学杂志, 2023,52(5):508-512.
[19] LI T, WANG W, LI S, et al. Lusianthridin Exerts Streptozotocin-Induced Gestational Diabetes Mellitus in Female Rats via Alteration of TLR4/MyD88/NF-κB Signaling Pathway. J Oleo Sci. 2023;72(8):775-785.
[20] WONG TS, MOHAMED TAP F, et al. Dual actions of gallic acid and andrographolide trigger AdipoR1 to stimulate insulin secretion in a streptozotocin-induced diabetes rat model. J Tradit Complement Med. 2022;13(1):11-19.
[21] WANG X, YANG B, LI Y, et al. AKR1C1 alleviates LPS induced ALI in mice by activating the JAK2/STAT3 signaling pathway. Mol Med Rep. 2021;24(6):833-845.
[22] SINGH S, YADAV M. Gestational Diabetes Mellitus among Pregnant Women Delivering in a Tertiary Care Hospital: A Descriptive Cross-sectional Study. JNMA J Nepal Med Assoc. 2022;60(247):229-233.
[23] DINESEN S, EL-FAITAROUNI A, FRISK NLS, et al. Circulating microRNA as Biomarkers for Gestational Diabetes Mellitus-A Systematic Review and Meta-Analysis. Int J Mol Sci. 2023;24(7):6186-6197.
[24] WU W, REN J, WANG J, et al. Metalloestrogens exposure and risk of gestational diabetes mellitus: Evidence emerging from the systematic review and meta-analysis. Environ Res. 2024;248(3):118321-118632.
[25] ANA Y, PRAFULLA S, DEEPA R, et al. Emerging and Public Health Challenges Existing in Gestational Diabetes Mellitus and Diabetes in Pregnancy. Endocrinol Metab Clin North Am. 2021;50(3):513-530.
[26] WANG S, CUI Z, YANG H. Interactions between host and gut microbiota in gestational diabetes mellitus and their impacts on offspring. BMC Microbiol. 2024;24(1):161-170.
[27] QIN Y, BILY D, AGUIRRE M, et al. Understanding PPARγ and Its Agonists on Trophoblast Differentiation and Invasion: Potential Therapeutic Targets for Gestational Diabetes Mellitus and Preeclampsia. Nutrients. 2023;15(11):2459-2471.
[28] LI Z, BECK R, DURNWALD C, et al. Continuous Glucose Monitoring Prediction of Gestational Diabetes Mellitus and Perinatal Complications. Diabetes Technol Ther. 2024;26(11):787-796.
[29] ZAKARIA H, ABUSANANA S, MUSSA BM, et al. The Role of Lifestyle Interventions in the Prevention and Treatment of Gestational Diabetes Mellitus. Medicina (Kaunas). 2023;59(2):287-298.
[30] TRANIDOU A, TSAKIRIDIS I, APOSTOLOPOULOU A, et al. Prediction of Gestational Diabetes Mellitus in the First Trimester of Pregnancy Based on Maternal Variables and Pregnancy Biomarkers. Nutrients. 2023;16(1):120-131.
[31] ELEFTHERIOU D, ATHANASIADOU KI, SIFNAIOS E, et al. Sleep disorders during pregnancy: an underestimated risk factor for gestational diabetes mellitus. Endocrine. 2024;83(1):41-50.
[32] 孙跃先,王九妹,崔新刚,等.穿心莲内酯调节HMGB1/RAGE信号通路对糖尿病周围神经病变大鼠坐骨神经功能损伤的影响[J].中国药房,2024,35(5):572-577.
[33] XU W, WANG H, SUN Q, et al. TXNIP-NLRP3-GSDMD axis-mediated inflammation and pyroptosis of islet β-cells is involved in cigarette smoke-induced hyperglycemia, which is alleviated by Andrographolide. Environ Toxicol. 2024;39(3):1415-1428.
[34] 亢丽娟, 董海平,宋艳艳.栀子苷调节HMGB1-RAGE信号通路对妊娠期糖尿病大鼠胰岛素抵抗的影响[J].解剖学研究,2024,46(2): 176-182,190
[35] KANG DH, KIM MJ, MOHAMED EA, et al. Regulation of uterus and placenta remodeling under high estradiol levels in gestational diabetes mellitus models†. Biol Reprod. 2023;109(2):215-226.
[36] LUDOWICI E. Assessing Knowledge on Gestational Diabetes Mellitus and Child Health. Hawaii J Health Soc Welf. 2023;82(10):227-231.
[37] JI J, WU P, LI G, et al. The associations of ferritin, serum lipid and plasma glucose levels across pregnancy in women with gestational diabetes mellitus and newborn birth weight. BMC Pregnancy Childbirth. 2023; 23(1):478-489.
[38] LIU Y, HOCHER JG, MA S, et al. Pre-pregnancy LDL/HDL and total Cholesterol/HDL ratios are strong predictors of gestational diabetes mellitus in women undergoing assisted reproductive technologies. Reprod Biol Endocrinol. 2024;22(1):155-167.
[39] YE YX, WANG Y, WU P, et al. Blood Cell Parameters From Early to Middle Pregnancy and Risk of Gestational Diabetes Mellitus. J Clin Endocrinol Metab. 2023;108(12):e1702-e1711.
[40] SAUCEDO R, ORTEGA-CAMARILLO C, FERREIRA-HERMOSILLO A, et al. Role of Oxidative Stress and Inflammation in Gestational Diabetes Mellitus. Antioxidants (Basel). 2023;12(10):1812-1820.
[41] JOSHI NP, MADIWALE SD, SUNDRANI DP, et al. Fatty acids, inflammation and angiogenesis in women with gestational diabetes mellitus. Biochimie. 2023;212(1):31-40.
[42] SAUCEDO R, ORTEGA-CAMARILLO C, FERREIRA-HERMOSILLO A, et al. Role of Oxidative Stress and Inflammation in Gestational Diabetes Mellitus. Antioxidants (Basel). 2023;12(10):1812-1824.
[43] JĞŞÖÖERDOAN F, ENKAL E, ZER F, et al. Oxidative stress in maternal milk and cord blood in gestational diabetes mellitus: a prospective study. Sao Paulo Med J. 2022;140(3):390-397.
[44] ZHAO Z, WU Q, XU Y, et al. Groenlandicine enhances cisplatin sensitivity in cisplatin-resistant osteosarcoma cells through the BAX/Bcl-2/Caspase-9/Caspase-3 pathway. J Bone Oncol. 2024;48(2): 100631-100642.
[45] WANG S, MA L, JI J, et al. Resistant Dextrin Protects Rats Against Streptozotocin Induced Gestational Diabetes Mellitus via Alteration of TLR4/MyD88/NF-B Signaling Pathway. Altern Ther Health Med. 2024;30(12):65-71.
[46] LI Y, HU Q, WANG B. Effects of Apelin on the fibrosis of retinal tissues and Müller cells in diabetes retinopathy through the JAK2/STAT3 signalling pathway. Autoimmunity. 2023;56(1):2259129.
[47] SUN M, ZHAO X, LI X, et al. Aerobic Exercise Ameliorates Liver Injury in Db/Db Mice by Attenuating Oxidative Stress, Apoptosis and Inflammation Through the Nrf2 and JAK2/STAT3 Signalling Pathways. J Inflamm Res. 2023;16(3):4805-4819.
[48] SUN M, ZHAO X, LI X, et al. Aerobic Exercise Ameliorates Liver Injury in Db/Db Mice by Attenuating Oxidative Stress, Apoptosis and Inflammation Through the Nrf2 and JAK2/STAT3 Signalling Pathways. J Inflamm Res. 2023;16(2):4805-4819.
[49] HU X, DUAN T, WU Z, et al. Puerarin Inhibits the PERK-eIF2[Formula: see text]-ATF4-CHOP Pathway through Inactivating JAK2/STAT3 Signal in Pancreatic beta-Cells. Am J Chin Med. 2021;49(7):1723-1738.
|