[1] NCD COUNTDOWN 2030 COLLABORATORS. NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. Lancet. 2018;392(10152):1072-1088.
[2] SUN H, SAEEDI P, KARURANGA S, et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.
[3] CHATTERJEE S, KHUNTI K, DAVIES MJ. Type 2 Diabetes. Lancet. 2017; 389(10085):2239-2251.
[4] MAJETY P, LOZADA ORQUERA FA, EDEM D, et al. Pharmacological Approaches to the Prevention of Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne). 2023;14:1118848.
[5] SIVAKUMAR PM, PRABHAWATHI V, ZARRABI A, et al. Current Trends in the Therapeutic Strategies for Diabetes Management. Curr Med Chem. 2021;28(23):4616-4637.
[6] MARRANO N, BIONDI G, CIGNARELLI A, et al. Functional Loss of Pancreatic Islets in Type 2 Diabetes: How Can We Halt It? Metabolism. 2020;110:154304.
[7] 阮光萍,姚翔,刘高米洋,等.脐带间充质干细胞移植治疗树鼩创伤性全身炎症反应综合征[J].中国组织工程研究,2021,25(25): 3994-4000.
[8] EBRAHIMI F, PIROUZMAND F, COSME PECHO RD, et al. Application of Mesenchymal Stem Cells in Regenerative Medicine: A New Approach in Modern Medical Science. Biotechnol Prog. 2023;39(6):e3374.
[9] LU LL, LIU YJ, YANG SG, et al. Isolation and Characterization of Human Umbilical Cord Mesenchymal Stem Cells with Hematopoiesis-Supportive Function and Other Potentials. Haematologica. 2006;91(8): 1017-1026.
[10] JIN HJ, BAE YK, KIM M, et al. Comparative Analysis of Human Mesenchymal Stem Cells from Bone Marrow, Adipose Tissue, and Umbilical Cord Blood as Sources of Cell Therapy. Int J Mol Sci. 2013; 14(9):17986-18001.
[11] WEISS ML, MEDICETTY S, BLEDSOE AR, et al. Human Umbilical Cord Matrix Stem Cells: Preliminary Characterization and Effect of Transplantation in a Rodent Model of Parkinson’s Disease. Stem Cells. 2006;24(3):781-792.
[12] PITTENGER MF, MACKAY AM, BECK SC, et al. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science. 1999;284(5411): 143-147.
[13] FRASER JK, WULUR I, ALFONSO Z, et al. Fat Tissue: An Underappreciated Source of Stem Cells for Biotechnology. Trends Biotechnol. 2006; 24(4):150-154.
[14] VENKATESAN M, ZHANG N, MARTEAU B, et al. Spatial Subcellular Organelle Networks in Single Cells. Sci Rep. 2023;13(1):5374.
[15] HORI A, TAKAHASHI A, MIHARU Y, et al. Superior Migration Ability of Umbilical Cord-Derived Mesenchymal Stromal Cells (MSCs) toward Activated Lymphocytes in Comparison with Those of Bone Marrow and Adipose-Derived MSCs. Front Cell Dev Biol. 2024;12:1329218.
[16] WANG J, YIN YQ, CHENG Y, et al. The Impact of Human Umbilical Cord-Derived Mesenchymal Stem Cells on the Pancreatic Function of Type 2 Diabetic Mice and Their Regulatory Role on NLRP3 Inflammasomes. Chin J Intern Med. 2023;62(9):1077-1084.
[17] GAO D, JIAO J, WANG Z, et al. The Roles of Cell-Cell and Organ-Organ Crosstalk in the Type 2 Diabetes Mellitus Associated Inflammatory Microenvironment. Cytokine Growth Factor Rev. 2022;66:15-25.
[18] DARYABOR G, ATASHZAR MR, KABELITZ D, et al. The Effects of Type 2 Diabetes Mellitus on Organ Metabolism and the Immune System. Front Immunol. 2020;11:1582.
[19] RUBIO-NAVARRO A, GOMEZ-BANOY N, STOLL L, et al. A Beta Cell Subset with Enhanced Insulin Secretion and Glucose Metabolism Is Reduced in Type 2 Diabetes. Nat Cell Biol. 2023;25(4):565-578.
[20] ZHAO X, AN X, YANG C, et al. The Crucial Role and Mechanism of Insulin Resistance in Metabolic Disease. Front Endocrinol (Lausanne). 2023;14:1149239.
[21] ASGHAR A, SHEIKH N. Role of Immune Cells in Obesity Induced Low Grade Inflammation and Insulin Resistance. Cell Immunol. 2017;315: 18-26.
[22] ROHM TV, MEIER DT, OLEFSKY JM, et al. Inflammation in Obesity, Diabetes, and Related Disorders. Immunity. 2022;55(1):31-55.
[23] MOSSER DM, HAMIDZADEH K, GONCALVES R. Macrophages and the Maintenance of Homeostasis. Cell Mol Immunol. 2021;18(3):579-587.
[24] BANU S, SUR D. Role of Macrophage in Type 2 Diabetes Mellitus: Macrophage Polarization a New Paradigm for Treatment of Type 2 Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets. 2023;23(1):2-11.
[25] SHAPOURI-MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage Plasticity, Polarization, and Function in Health and Disease. J Cell Physiol. 2018;233(9):6425-6440.
[26] CUENCO J, DALMAS E. Islet Inflammation and Beta Cell Dysfunction in Type 2 Diabetes. Handb Exp Pharmacol. 2022;274:227-251.
[27] YING W, FU W, LEE YS, et al. The Role of Macrophages in Obesity-Associated Islet Inflammation and Beta-Cell Abnormalities. Nat Rev Endocrinol. 2020;16(2):81-90.
[28] PENG Y, ZHOU M, YANG H, et al. Regulatory Mechanism of M1/M2 Macrophage Polarization in the Development of Autoimmune Diseases. Mediators Inflamm. 2023;2023:8821610.
[29] ARABPOUR M, SAGHAZADEH A, REZAEI N. Anti-Inflammatory and M2 Macrophage Polarization-Promoting Effect of Mesenchymal Stem Cell-Derived Exosomes. Int Immunopharmacol. 2021;97:107823.
[30] SU J, LUO Y, HU S, et al. Advances in Research on Type 2 Diabetes Mellitus Targets and Therapeutic Agents. Int J Mol Sci. 2023;24(17): 13381.
[31] JING T, ZHANG S, BAI M, et al. Effect of Dietary Approaches on Glycemic Control in Patients with Type 2 Diabetes: A Systematic Review with Network Meta-Analysis of Randomized Trials. Nutrients. 2023;15(14):3156.
[32] SOO J, RAMAN A, LAWLER NG, et al. The Role of Exercise and Hypoxia on Glucose Transport and Regulation. Eur J Appl Physiol. 2023;123(6): 1147-1165.
[33] MAGKOS F, HJORTH MF, ASTRUP A. Diet and Exercise in the Prevention and Treatment of Type 2 Diabetes Mellitus. Nat Rev Endocrinol. 2020; 16(10):545-555.
[34] DAHLEN AD, DASHI G, MASLOV I, et al. Trends in Antidiabetic Drug Discovery: FDA Approved Drugs, New Drugs in Clinical Trials and Global Sales. Front Pharmacol. 2021;12:807548.
[35] MASTROTOTARO L, RODEN M. Insulin Resistance and Insulin Sensitizing Agents. Metabolism. 2021;125:154892.
[36] LV W, WANG X, XU Q, et al. Mechanisms and Characteristics of Sulfonylureas and Glinides. Curr Top Med Chem. 2020;20(1):37-56.
[37] GILBERT MP, PRATLEY RE. GLP-1 Analogs and DPP-4 Inhibitors in Type 2 Diabetes Therapy: Review of Head-to-Head Clinical Trials. Front Endocrinol (Lausanne). 2020;11:178.
[38] POWELL J, GARLAND SG. Ertugliflozin: A New Option in the SGLT-2 Inhibitor Market for the Treatment of Type 2 Diabetes Mellitus. Ann Pharmacother. 2019;53(5):478-485.
[39] GRYTSAI O, MYRGORODSKA I, ROCCHI S, et al. Biguanides Drugs: Past Success Stories and Promising Future for Drug Discovery. Eur J Med Chem. 2021;224:113726.
[40] AGRAWAL N, SHARMA M, SINGH S, et al. Recent Advances of Alpha-Glucosidase Inhibitors: A Comprehensive Review. Curr Top Med Chem. 2022;22(25):2069-2086.
[41] 谢田琴,刘建萍.脐带间充质干细胞在糖尿病治疗中的研究进展[J].生命科学,2020,32(8):837-844.
[42] SABABATHY M, RAMANATHAN G, ABD RAHAMAN NY, et al. A ‘One Stone, Two Birds’ Approach with Mesenchymal Stem Cells for Acute Respiratory Distress Syndrome and Type Ii Diabetes Mellitus. Regen Med. 2023;18(12):913-934.
[43] ZANG L, LI Y, HAO H, et al. Efficacy and Safety of Umbilical Cord-Derived Mesenchymal Stem Cells in Chinese Adults with Type 2 Diabetes: A Single-Center, Double-Blinded, Randomized, Placebo-Controlled Phase Ii Trial. Stem Cell Res Ther. 2022;13(1):180.
[44] MATHUR A, TAURIN S, ALSHAMMARY S. The Safety and Efficacy of Mesenchymal Stem Cells in the Treatment of Type 2 Diabetes- a Literature Review. Diabetes Metab Syndr Obes. 2023;16:769-777.
[45] LIAN XF, LU DH, LIU HL, et al. Safety Evaluation of Human Umbilical Cord-Mesenchymal Stem Cells in Type 2 Diabetes Mellitus Treatment: A Phase 2 Clinical Trial. World J Clin Cases. 2023;11(21):5083-5096.
[46] 许玲玉,张丰姣,张辉,等.间充质干细胞在成人隐匿性自身免疫性糖尿病患者中免疫抑制作用的研究[J].中国糖尿病杂志,2021, 29(10):763-773.
[47] HUANG Y, WU Q, TAM PKH. Immunomodulatory Mechanisms of Mesenchymal Stem Cells and Their Potential Clinical Applications. Int J Mol Sci. 2022;23(17):10023.
[48] SHI Y, WANG Y, LI Q, et al. Immunoregulatory Mechanisms of Mesenchymal Stem and Stromal Cells in Inflammatory Diseases. Nat Rev Nephrol. 2018;14(8):493-507.
[49] SHOBATAKE R, OTA H, TAKAHASHI N, et al. The Impact of Intermittent Hypoxia on Metabolism and Cognition. Int J Mol Sci. 2022;23(21): 12957.
[50] GUPTA S, RAWAT S, KRISHNAKUMAR V, et al. Hypoxia Preconditioning Elicit Differential Response in Tissue-Specific MSCs Via Immunomodulation and Exosomal Secretion. Cell Tissue Res. 2022;388(3):535-548.
[51] BI S, NIE Q, WANG WQ, et al. Human Umbilical Cord Mesenchymal Stem Cells Therapy for Insulin Resistance: A Novel Strategy in Clinical Implication. Curr Stem Cell Res Ther. 2018;13(8):658-664.
[52] XIE Z, HAO H, TONG C, et al. Human Umbilical Cord-Derived Mesenchymal Stem Cells Elicit Macrophages into an Anti-Inflammatory Phenotype to Alleviate Insulin Resistance in Type 2 Diabetic Rats. Stem Cells. 2016;34(3):627-639.
[53] CHEN G, FAN XY, ZHENG XP, et al. Human Umbilical Cord-Derived Mesenchymal Stem Cells Ameliorate Insulin Resistance Via PTEN-Mediated Crosstalk between the PI3K/Akt and Erk/MAPKs Signaling Pathways in the Skeletal Muscles of Db/Db Mice. Stem Cell Res Ther. 2020;11(1):401.
[54] YIN Y, HAO H, CHENG Y, et al. The Homing of Human Umbilical Cord-Derived Mesenchymal Stem Cells and the Subsequent Modulation of Macrophage Polarization in Type 2 Diabetic Mice. Int Immunopharmacol. 2018;60:235-245.
[55] XUE J, GAO J, GU Y, et al. Human Umbilical Cord-Derived Mesenchymal Stem Cells Alleviate Insulin Resistance in Diet-Induced Obese Mice Via an Interaction with Splenocytes. Stem Cell Res Ther. 2022;13(1):109.
[56] SUN X, HAO H, HAN Q, et al. Human Umbilical Cord-Derived Mesenchymal Stem Cells Ameliorate Insulin Resistance by Suppressing NLRP3 Inflammasome-Mediated Inflammation in Type 2 Diabetes Rats. Stem Cell Res Ther. 2017;8(1):241.
[57] GAO J, CHENG Y, HAO H, et al. Decitabine Assists Umbilical Cord-Derived Mesenchymal Stem Cells in Improving Glucose Homeostasis by Modulating Macrophage Polarization in Type 2 Diabetic Mice. Stem Cell Res Ther. 2019;10(1):259.
[58] XUE J, CHENG Y, HAO H, et al. Low-Dose Decitabine Assists Human Umbilical Cord-Derived Mesenchymal Stem Cells in Protecting Cells Via the Modulation of the Macrophage Phenotype in Type 2 Diabetic Mice. Stem Cells Int. 2020;2020:4689798.
[59] AIERKEN A, LI B, LIU P, et al. Melatonin Treatment Improves Human Umbilical Cord Mesenchymal Stem Cell Therapy in a Mouse Model of Type Ii Diabetes Mellitus Via the PI3K/Akt Signaling Pathway. Stem Cell Res Ther. 2022;13(1):164.
[60] COSENTINO C, REGAZZI R. Crosstalk between Macrophages and Pancreatic Beta-Cells in Islet Development, Homeostasis and Disease. Int J Mol Sci. 2021;22(4):1765.
[61] KAUR S, BANSAL Y, KUMAR R, et al. A Panoramic Review of IL-6: Structure, Pathophysiological Roles and Inhibitors. Bioorg Med Chem. 2020;28(5):115327.
[62] GURIA S, HOORY A, DAS S, et al. Adipose Tissue Macrophages and Their Role in Obesity-Associated Insulin Resistance: An Overview of the Complex Dynamics at Play. Biosci Rep. 2023;43(3):BSR20220200.
[63] JIA Q, MORGAN-BATHKE ME, JENSEN MD. Adipose Tissue Macrophage Burden, Systemic Inflammation, and Insulin Resistance. Am J Physiol Endocrinol Metab. 2020;319(2):E254-E264.
[64] SARAIVA M, VIEIRA P, O’GARRA A. Biology and Therapeutic Potential of Interleukin-10. J Exp Med. 2020;217(1):e20190418.
[65] MAN K, KALLIES A, VASANTHAKUMAR A. Resident and Migratory Adipose Immune Cells Control Systemic Metabolism and Thermogenesis. Cell Mol Immunol. 2022;19(3):421-431.
[66] QI Y, DU X, YAO X, et al. Vildagliptin Inhibits High Free Fatty Acid (FFA)-Induced NLRP3 Inflammasome Activation in Endothelial Cells. Artif Cells Nanomed Biotechnol. 2019;47(1):1067-1074.
[67] BARRA NG, HENRIKSBO BD, ANHE FF, et al. The NLRP3 Inflammasome Regulates Adipose Tissue Metabolism. Biochem J. 2020;477(6): 1089-1107.
[68] LU S, LI Y, QIAN Z, et al. Role of the Inflammasome in Insulin Resistance and Type 2 Diabetes Mellitus. Front Immunol. 2023;14:1052756.
[69] 邹俊彦,薛婧,尹雅琪,等.脐带间充质干细胞(UC-MSC)通过增强自噬缓解2型糖尿病小鼠肝脏胰岛素抵抗[J].南开大学学报(自然科学版),2021,54(1):30-34.
[70] LI B, CHENG X, AIERKEN A, et al. Melatonin Promotes the Therapeutic Effect of Mesenchymal Stem Cells on Type 2 Diabetes Mellitus by Regulating TGF-Beta Pathway. Front Cell Dev Biol. 2021;9:722365.
[71] FANG J, YAN Y, TENG X, et al. Melatonin Prevents Senescence of Canine Adipose-Derived Mesenchymal Stem Cells through Activating NRF2 and Inhibiting ER Stress. Aging (Albany NY). 2018;10(10):2954-2972.
[72] SHEN Z, HUANG W, LIU J, et al. Effects of Mesenchymal Stem Cell-Derived Exosomes on Autoimmune Diseases. Front Immunol. 2021; 12:749192.
[73] WANG S, LEI B, ZHANG E, et al. Targeted Therapy for Inflammatory Diseases with Mesenchymal Stem Cells and Their Derived Exosomes: From Basic to Clinics. Int J Nanomedicine. 2022;17:1757-1781.
[74] YAP SK, TAN KL, ABD RAHAMAN NY, et al. Human Umbilical Cord Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Ameliorated Insulin Resistance in Type 2 Diabetes Mellitus Rats. Pharmaceutics. 2022;14(3):649.
[75] CHEN MT, ZHAO YT, ZHOU LY, et al. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Enhance Insulin Sensitivity in Insulin Resistant Human Adipocytes. Curr Med Sci. 2021;41(1):87-93.
[76] SUN Y, SHI H, YIN S, et al. Human Mesenchymal Stem Cell Derived Exosomes Alleviate Type 2 Diabetes Mellitus by Reversing Peripheral Insulin Resistance and Relieving β-Cell Destruction. ACS Nano. 2018; 12(8):7613-7628.
[77] LI H, MENG Y, HE S, et al. Macrophages, Chronic Inflammation, and Insulin Resistance. Cells. 2022;11(19):3001.
[78] PUSCHEL GP, KLAUDER J, HENKEL J. Macrophages, Low-Grade Inflammation, Insulin Resistance and Hyperinsulinemia: A Mutual Ambiguous Relationship in the Development of Metabolic Diseases. J Clin Med. 2022;11(15):4358.
[79] RODRIGUEZ-COMAS J, MORENO-VEDIA J, OBACH M, et al. Alpha1-Antitrypsin Ameliorates Islet Amyloid-Induced Glucose Intolerance and Beta-Cell Dysfunction. Mol Metab. 2020;37:100984.
[80] ZHOU Y, HU Q, CHEN F, et al. Human Umbilical Cord Matrix-Derived Stem Cells Exert Trophic Effects on β-Cell Survival in Diabetic Rats and Isolated Islets. Dis Model Mech. 2015;8(12):1625-1633.
[81] YIN Y, HAO H, CHENG Y, et al. Human Umbilical Cord-Derived Mesenchymal Stem Cells Direct Macrophage Polarization to Alleviate Pancreatic Islets Dysfunction in Type 2 Diabetic Mice. Cell Death Dis. 2018;9(7):760.
[82] PAN XH, HUANG X, RUAN GP, et al. Umbilical Cord Mesenchymal Stem Cells Are Able to Undergo Differentiation into Functional Islet-Like Cells in Type 2 Diabetic Tree Shrews. Mol Cell Probes. 2017;34:1-12.
[83] LI B, CHENG Y, YIN Y, et al. Reversion of Early- and Late-Stage β-Cell Dedifferentiation by Human Umbilical Cord-Derived Mesenchymal Stem Cells in Type 2 Diabetic Mice. Cytotherapy. 2021;23(6):510-520.
[84] WANG W, WU RD, CHEN P, et al. Liraglutide Combined with Human Umbilical Cord Mesenchymal Stem Cell Transplantation Inhibits Beta-Cell Apoptosis Via Mediating the ASK1/JNK/BAX Pathway in Rats with Type 2 Diabetes. Diabetes Metab Res Rev. 2020;36(2):e3212.
[85] YING W, LEE YS, DONG Y, et al. Expansion of Islet-Resident Macrophages Leads to Inflammation Affecting Beta Cell Proliferation and Function in Obesity. Cell Metab. 2019;29(2):457-474.e455.
[86] MUKHUTY A, FOUZDER C, KUNDU R. Fetuin-a Secretion from Beta-Cells Leads to Accumulation of Macrophages in Islets, Aggravates Inflammation and Impairs Insulin Secretion. J Cell Sci. 2021;134(21): jcs258507.
[87] ZHOU Y, LIU K, TANG W, et al. Beta-Cell miRNA-503-5p Induced by Hypomethylation and Inflammation Promotes Insulin Resistance and Beta-Cell Decompensation. Diabetes. 2024;73(1):57-74.
[88] XIE T, HUANG Q, HUANG Q, et al. Dysregulated lncRNAs Regulate Human Umbilical Cord Mesenchymal Stem Cell Differentiation into Insulin-Producing Cells by Forming a Regulatory Network with mRNAs. Stem Cell Res Ther. 2024;15(1):22. |