中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (13): 3424-3434.doi: 10.12307/2026.325
• 干细胞综述 stem cell review • 上一篇 下一篇
吴显元1,张霓霓1,黄桂林2
接受日期:2025-07-04
出版日期:2026-05-08
发布日期:2025-12-26
通讯作者:
张霓霓,硕士,副教授,遵义医科大学附属口腔医院口腔颌面外科,贵州省遵义市 563000
作者简介:吴显元,男,1999年生,贵州省独山县人,布依族,遵义医科大学在读硕士,主要从事口腔颌面部放射性组织损伤的修复研究。
基金资助:Wu Xianyuan1, Zhang Nini1, Huang Guilin2
Accepted:2025-07-04
Online:2026-05-08
Published:2025-12-26
Contact:
Zhang Nini, MS, Associate professor, Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
About author:Wu Xianyuan, Master candidate, Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
Supported by:摘要:
文题释义:
基因转染:是指通过物理、化学或生物手段将外源基因(如DNA或RNA)人工导入真核细胞内的技术,以实现目的基因在宿主细胞中的表达或功能研究。中图分类号:
吴显元, 张霓霓, 黄桂林. 基因转染技术与组织纤维化修复[J]. 中国组织工程研究, 2026, 30(13): 3424-3434.
Wu Xianyuan, Zhang Nini, Huang Guilin. Gene transfection technology and tissue fibrosis repair[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(13): 3424-3434.





| [1] DISTLER JHW, GYÖRFI AH, RAMANUJAM M, et al. Shared and distinct mechanisms of fibrosis. Nat Rev Rheumatol. 2019;15(12): 705-730. [2] ZHAO Y, QU Y, HAO C, et al. PD-1/PD-L1 axis in organ fibrosis. Front Immunol. 2023;14: 1145682. [3] BATLLE E, MASSAGUÉ J. Transforming growth factor-β signaling in immunity andcancer. Immunity. 2019;50(4):924-940. [4] GU X, JIANG YN, WANG WJ, et al. Comprehensive circRNA expression profileand construction of circRNA-related ceRNA network in cardiac fibrosis. Biomed Pharmacother. 2020;125:109944. [5] YANG Q, ZHANG P, LIU T, et al. Magnesium isoglycyrrhizinate ameliorates radiation-induced pulmonary fibrosis by inhibiting fibroblast differentiation via the p38MAPK/Akt/Nox4 pathway. Biomed Pharmacother. 2019;115:108955. [6] FENG Y, REN J, GUI Y, et al. Wnt/β-catenin-promoted macrophage alternative activation contributes to kidney fibrosis. J Am Soc Nephrol. 2018;29(1):182-193. [7] RONG X, LIU J, YAO X, et al. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Res Ther. 2019;10(1):98. [8] VERMA S, DUTTA A, DAHIYA A, et al. Quercetin-3-rutinoside alleviates radiation-induced lung inflammation and fibrosisvia regulation of NF-κB/TGF-β1 signaling. Phytomedicine. 2022;99:154004. [9] YU Z, XU C, SONG B, et al. Tissue fibrosis induced by radiotherapy: current understanding of the molecular mechanisms, diagnosis and therapeutic advances. J Transl Med. 2023;21(1):708. [10] LU C, LIU Y, REN F, et al. HO-1: An emerging target in fibrosis. J Cell Physiol. 2025;240(1):e31465. [11] WANG M, HUO Z, HE X, et al. The Role of MiR-29 in the Mechanism of Fibrosis. Mini Rev Med Chem. 2023;23(19):1846-1858. [12] MOHAMMADI S, RAVANBAKHSH H, TAHERI S, et al. Immunomodulatory microgels support proregenerative macrophage activation and attenuate fibroblast collagen synthesis. Adv Healthc Mater. 2022;11(11):e2102366. [13] ARTLETT CM. The Mechanism and Regulation of the NLRP3 Inflammasome during Fibrosis. Biomolecules. 2022;12(5):634. [14] BARHATE A, BAJAJ P, SHIRBHATE U, et al. Implications of Gene Therapy in Dentistry and Periodontics: A Narrative Review. Cureus. 2023;15(11):e49437. [15] TANG R, XU Z. Gene therapy: a double-edged sword with great powers. Mol Cell Biochem. 2020;474(1-2):73-81. [16] CHANCELLOR D, BARRETT D, NGUYEN-JATKOE L, et al. The state of cell and gene therapy in 2023. Mol Ther. 2023;31(12): 3376-3388. [17] SAYED N, ALLAWADHI P, KHURANA A, et al. Gene therapy: Comprehensive overview and therapeutic applications. Life Sci. 2022; 294:120375. [18] GUTIERREZ-GUERRERO A, COSSET FL, VERHOEYEN E. Lentiviral Vector Pseudotypes: PreciousTools to Improve Gene Modification of Hematopoietic Cells for Research and Gene Therapy. Viruses. 2020;12(9):1016. [19] XU F, LIU X, ZHANG D, et al. The Engineered MARCH8-Resistant Vesicular Stomatitis VirusGlycoprotein Enhances Lentiviral Vector Transduction. Hum Gene Ther. 2021; 32(17-18):936-948. [20] SCARROTT JM, JOHARI YB, POHLE TH, et al. Increased recombinant adeno-associated virus production by HEK293 cells using small molecule chemical additives. Biotechnol J. 2023;18(3):e2200450. [21] ZHAO L, YANG Z, ZHENG M, et al. Recombinant adeno-associated virus 8 vectorin genetherapy: Opportunities and challenges. Genes Dis. 2023;11(1):283-293. [22] ZU H, GAO D. Non-viral Vectors in Gene Therapy: Recent Development, Challenges, and Prospects. AAPS J. 2021;23(4):78. [23] WANG MZ, XU Y, XIE JF, et al. Ginsenoside as a new stabilizer enhances the transfection efficiency and biocompatibility of cationic liposome. Biomater Sci. 2021;9(24):8373-8385. [24] HADI A, RASTGOO A, HAGHIGHIPOUR N, et al. Enhanced gene delivery in tumor cells using chemical carriers and mechanical loadings. PLoS One. 2018;13(12):e020919. [25] SHOKOUHI AR, CHEN Y, YOH HZ, et al. Engineering Efficient CAR-T Cells via Electroactive Nanoinjection. Adv Mater. 2023;35(44):e2304122. [26] GUO H, SUN J, ZHANG S, et al. Progress in understanding and treating idiopathic pulmonary fibrosis: recent insights and emerging therapies. Front Pharmacol. 2023;14:1205948. [27] XIAO K, LIU C, WANG H, et al. Umbilical cord mesenchymal stem cells overexpressing CXCR7 facilitate treatment of ARDS-associated pulmonary fibrosis via inhibition of Notch/Jag1 mediated by the Wnt/β-catenin pathway. Biomed Pharmacother. 2023;165:115124. [28] WANG F, ZHANG Y, REN J, et al. HIPK2 attenuates bleomycin-induced pulmonaryfibrosis by suppressing the Wnt/β-catenin signaling pathway. Folia Histochem Cytobiol. 2022;60(3):247-259. [29] CHEN L, TANG RZ, RUAN J, et al. Up-regulation of THY1 attenuates interstitial pulmonary fibrosis and promotes lung fibroblast apoptosis during acute interstitial pneumonia by blockade of the WNT signaling pathway. Cell Cycle. 2019;18(6-7):670-681. [30] LIU L, QIAN H, HU K, et al. miR-27a-3p inhibits pulmonary fibrosis by blocking Wnt3a/β-catenin pathway in rats. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2018;34(11): 1015-1020. [31] WANG YC, LIU JS, TANG HK, et al. miR 221 targets HMGA2 to inhibit bleomycin induced pulmonary fibrosis by regulating TGF β1/Smad3-induced EMT. Int J Mol Med. 2016;38(4):1208-1216. [32] ZHU M, AN Y, ZHANG X, et al. Experimental pulmonary fibrosis was suppressed by microRNA-506 through NF-kappa-mediated apoptosis and inflammation. Cell Tissue Res. 2019;378(2):255-265. [33] CHANG J, HUANG C, LI S, et al. Research Progress Regarding the Effect and Mechanism of Dietary Polyphenols in Liver Fibrosis. Molecules. 2023;29(1):127. [34] QU Y, ZHANG Q, CAI X, et al. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J Cell Mol Med. 2017;21(10):2491-2502. [35] PAIK KY, KIM KH, PARK JH, et al. A novel antifibrotic strategy utilizing conditioned media obtained from miR-150-transfected adipose-derived stem cells: validation of an animal model of liver fibrosis. Exp Mol Med. 2020;52(3):438-449. [36] ZHOU G, LIN W, FANG P, et al. MiR-10a improves hepatic fibrosis by regulating the TGFβl/Smads signal transduction pathway. Exp Ther Med. 2016;12(3):1719-1722. [37] MOON SH, LEE CM, PARK SH, et al. Effects of hepatocyte growth factor gene-transfected mesenchymal stem cells on dimethylnitrosamine-induced liver fibrosis in rats. Growth Factors. 2019;37(3-4):105-119. [38] LI Y, DONG J, ZHOU Y, et al. Therapeutic effects of CXCL9-overexpressing human umbilicalcord mesenchymal stem cells on liver fibrosis in rats. Biochem Biophys Res Commun. 2021;584:87-94. [39] XU Y, TANG X, YANG M, et al. Interleukin 10 Gene-Modified Bone Marrow-Derived Dendritic Cells Attenuate Liver Fibrosis in Mice by Inducing Regulatory T Cells and Inhibiting the TGF-β/Smad Signaling Pathway. Mediators Inflamm. 2019;2019:4652596. [40] XU J, WANG J, LONG F, et al. Inhibition of the cardiac fibroblast-enriched histone methyltransferase Dot1L prevents cardiac fibrosis and cardiac dysfunction. Cell Biosci. 2022;12(1):134. [41] LEE SG, KIM D, LEE JJ, et al. Dapagliflozin attenuates diabetes-induced diastolic dysfunction and cardiac fibrosis by regulating SGK1 signaling. BMC Med. 2022; 20(1):309. [42] LIU Y, ZHU Y, LIU S, et al. NORAD lentivirus shRNA mitigates fibrosis and inflammatory responses in diabetic cardiomyopathy via the ceRNA network of NORAD/miR-125a-3p/Fyn. Inflamm Res. 2021;70(10-12): 1113-1127. [43] ZHANG LX, ZHANG SH, WANG CQ, et al. Role and mechanism of microRNA-548c-3p/c-Myb in myocardial infarction fibrosis in rats. Eur Rev Med Pharmacol Sci. 2019; 23(11):4908-4916. [44] FENG Y, BAO Y, DING J, et al. MicroRNA-130a attenuates cardiac fibrosis after myocardial infarction through TGF-β/Smad signaling by directly targeting TGF-β receptor 1. Bioengineered. 2022;13(3): 5779-5791. [45] ZHANG XL, ZHANG G, BAI ZH. miR-34a attenuates myocardial fibrosis in diabetic cardiomyopathy mice via targeting Pin-1. Cell Biol Int. 2021;45(3):642-653. [46] WAHEED YA, BUBERWA W, SUN D. Glial cell line-derived neurotrophic factor and its role in attenuating renal fibrosis: a review. Korean J Intern Med. 2025;40(2):219-229. [47] LI S, WANG Y, WANG Z, et al. Enhanced renoprotective effect of GDNF-modified adipose-derived mesenchymal stem cells on renal interstitial fibrosis. Stem Cell Res Ther. 2021;12(1):27. [48] CHEN L, WANG Y, LI S, et al. Exosomes derived from GDNF-modified human adipose mesenchymal stem cells ameliorate peritubular capillary loss in tubulointerstitial fibrosis by activating the SIRT1/eNOS signaling pathway. Theranostics. 2020; 10(20):9425-9442. [49] ZHANG Y. MiR-92d-3p suppresses the progression of diabetic nephropathy renal fibrosis by inhibiting the C3/HMGB1/TGF-β1 pathway. Biosci Rep. 2021;41(9): BSR20203131. [50] ZHANG Y, CHEN X, DENG Y. miR-125a-3p decreases levels of interlukin-17 and suppresses renal fibrosis via down-regulating TGF-β1 in systemic lupus erythematosus mediated Lupus nephritic mice. Am J Transl Res. 2019;11(3):1843-1853. [51] GAO BH, WU H, WANG X, et al. MiR-30c-5p inhibits high glucose-induced EMT and renal fibrogenesis by down-regulation of JAK1 in diabetic nephropathy. Eur Rev Med Pharmacol Sci. 2020;24(3):1338-1349. [52] ZHANG X, YANG Z, HENG Y, et al. MicroRNA 181 exerts an inhibitory role during renal fibrosis by targeting early growth response factor 1 and attenuating the expression of profibrotic markers. Mol Med Rep. 2019; 19(4):3305-3313. [53] LEE M, KIM SH, JHEE JH, et al. Microparticles derived from human erythropoietin mRNA-transfected mesenchymal stem cells inhibit epithelial-to-mesenchymal transition and ameliorate renal interstitial fibrosis. Stem Cell Res Ther. 2020;11(1):422. [54] XIE M, WAN J, ZHANG F, et al. Influence of hepatocyte growth factor-transfected bone marrow-derived mesenchymal stem cells towards renal fibrosis in rats. Indian J Med Res. 2019;149(4):508-516. [55] LI SS, WU CZ, QIAO XH, et al. Advances on mechanism and treatment of salivary gland in radiation injury. Hua Xi Kou Qiang Yi Xue Za Zhi. 2021;39(1):99-104. [56] EGGENHOFER E, BENSELER V, KROEMER A, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol. 2012;3:297. [57] UPADHYAY A, CAO UMN, HARIHARAN A, et al. Gene Therapeutic Delivery to the Salivary Glands. Adv Exp Med Biol. 2023;1436:55-68. [58] LI SS, WU CZ, ZHANG BW, et al. Nerve growth factor protects salivary glands from irradiation-induced damage. Life Sci. 2021;265:118748. [59] GUO X, HUANG Z, WU F, et al. Exosomes of human adipose stem cells mitigate irradiation injury to salivary glands by inhibiting epithelial-mesenchymal transition through miR-199a-3p targeting Twist1 and regulating TGFβ1/Smad3 pathway. Theranostics. 2025;15(5):1622-1641. [60] YANG J, ZHOU CZ, ZHU R, et al. miR-200b-containing microvesicles attenuate experimental colitis associated intestinal fibrosis by inhibiting epithelial-mesenchymal transition. J Gastroenterol Hepatol. 2017; 32(12):1966-1974. [61] LI W, LIN Y, LUO Y, et al. Vitamin D Receptor Protects against Radiation-Induced Intestinal Injury in Mice via Inhibition of Intestinal Crypt Stem/Progenitor Cell Apoptosis. Nutrients. 2021;13(9):2910. [62] WANG X, LU Y, CHENG X, et al. Local Multiple-site Injections of a Plasmid Encoding Human MnSOD Mitigate Radiation-induced Skin Injury by Inhibiting Ferroptosis. Curr Drug Deliv. 2024;21(5):763-774. [63] FUJISAWA C, HAMANOUE M, KAWANO Y, et al. The Role for miR-146b-5p in the Attenuation of Dermal Fibrosis and Angiogenesis by Targeting PDGFRα in Skin Wounds. J Invest Dermatol. 2022;142(7): 1990-2002.e4. [64] XIE L, LONG X, MO M, et al. Bone marrow mesenchymal stem cell-derived exosomes alleviate skin fibrosis in systemic sclerosis by inhibiting the IL-33/ST2 axis via the delivery of microRNA-214. Mol Immunol. 2023;157:146-157. [65] YADAV S, MAITY P, KAPAT K. The Opportunities and Challenges of Mesenchymal Stem Cells-Derived Exosomes in Theranostics and Regenerative Medicine. Cells. 2024;13(23):1956. [66] MEHRABANI M, MOHAMMADYAR S, RAJIZADEH MA, et al. Boosting therapeutic efficacy of mesenchymal stem cells in pulmonary fibrosis: The role of genetic modification and preconditioning strategies. Iran J Basic Med Sci. 2023;26(9):1001-1015. [67] LI C, WANG B. Mesenchymal Stem/Stromal Cells in Progressive Fibrogenic Involvement and Anti-Fibrosis Therapeutic Properties. Front Cell Dev Biol. 2022;10:902677. [68] YANG S, LIU P, JIANG Y, et al. Therapeutic Applications of Mesenchymal Stem Cells in Idiopathic Pulmonary Fibrosis. Front Cell Dev Biol. 2021;9:639657. [69] LI T, LI X, HAN G, et al. The Therapeutic Potential and Clinical Significance of Exosomes as Carriers of Drug Delivery System. Pharmaceutics. 2022;15(1):21. [70] XIAO Y, XIANG Q, WANG Y, et al. Exosomes carrying adipose mesenchymal stem cells function alleviate scleroderma skin fibrosis by inhibiting the TGF-β1/Smad3 axis. Sci Rep. 2025;15(1):7162. [71] LIU Y, ZHENG Y, YANG Y, et al. Exosomes in liver fibrosis: The role of modulating hepatic stellate cells and immune cells, and prospects for clinical applications. Front Immunol. 2023;14:1133297. [72] TAN F, LI X, WANG Z, et al. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther. 2024;9(1):17. [73] ZHANG M, HU S, LIU L, et al. Engineered exosomes from different sources for cancer-targeted therapy. Signal Transduct Target Ther. 2023;8(1):124. [74] FAN M, LIU H, YAN H, et al. A CAR T-inspiring platform based on antibody-engineered exosomes from antigen-feeding dendritic cells for precise solid tumor therapy. Biomaterials. 2022;282:121424. [75] ZHANG J, JI C, ZHANG H, et al. Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy. Sci Adv. 2022; 8(2):eabj8207. [76] BALARAMAN AK, BABU MA, MOGLAD E, et al. Exosome-mediated delivery of CRISPR-Cas9: A revolutionary approach to cancer gene editing. Pathol Res Pract. 2025;266:155785. [77] BAHADORANI M, NASIRI M, DELLINGER K, et al. Engineering Exosomes for Therapeutic Applications: Decoding Biogenesis, Content Modification, and Cargo Loading Strategies. Int J Nanomedicine. 2024;19:7137-7164. [78] LIU W, LIU Q, LI Z, et al. Multifunctional magneto-electric and exosome-loaded hydrogel enhances neuronal differentiation and immunoregulation through remote non-invasive electrical stimulation for neurological recovery after spinal cord injury. Bioact Mater. 2025;48:510-528. [79] JUNG I, SHIN S, BAEK MC, et al. Modification of immune cell-derived exosomes for enhanced cancer immunotherapy: current advances and therapeutic applications. Exp Mol Med. 2024;56(1):19-31. [80] HUANG J, CHEN H, LUO Z, et al. Genetically Engineered Stromal Cell Exosomes from High-Throughput Herringbone Microfluidics. ACS Nano. 2025;19(10):10568-10577. |
| [1] | 谭 婧, 李 莉, 王亮亮, 秦祥宇. 仿生功能涂层改善钛植入体与皮肤组织界面的整合[J]. 中国组织工程研究, 2026, 30(8): 2014-2022. |
| [2] | 傅律鹏, 于 鹏, 梁国彦, 昌耘冰. 脊柱外科领域应用的电活性材料[J]. 中国组织工程研究, 2026, 30(8): 2113-2123. |
| [3] | 蒋星海, 宋玉林, 李德津, 邵建敏, 徐军志, 刘华凯, 吴应国, 沈岳辉, 冯思诚. 血管内皮生长因子165基因转染骨髓间充质干细胞构建血管化两亲性肽凝胶模块[J]. 中国组织工程研究, 2026, 30(8): 1903-1911. |
| [4] | 宋浦蓁, 马贺宾, 陈宏广, 章亚东. 骨髓间充质干细胞外泌体联合转化生长因子β1对巨噬细胞的作用[J]. 中国组织工程研究, 2026, 30(7): 1616-1623. |
| [5] | 何家乐, 黄 茜, 董鸿斐, 陈 朗, 钟方宇, 李先慧. 脱细胞真皮基质联合脂肪干细胞外泌体促进烧伤创面愈合[J]. 中国组织工程研究, 2026, 30(7): 1699-1710. |
| [6] | 夏林枫, 王 露, 龙乾发, 唐荣武, 罗浩东, 汤 轶, 钟 俊, 刘 阳. 人脐带间充质干细胞来源外泌体减轻脓毒症脑病小鼠血脑屏障损伤[J]. 中国组织工程研究, 2026, 30(7): 1711-1719. |
| [7] | 陈钰璘, 何莹莹, 胡 凯, 陈枝凡, 聂 莎, 蒙衍慧, 李闰珍, 张小朵, 李宇稀, 唐耀平. 瓜蒌类外泌体囊泡防治动脉粥样硬化的作用及机制[J]. 中国组织工程研究, 2026, 30(7): 1768-1781. |
| [8] | 韩 腾, 马 洪, 杨若仪, 罗 祎, 李 超. 口腔鳞状细胞癌细胞来源外泌体递送血管生成素2参与肿瘤血管生成[J]. 中国组织工程研究, 2026, 30(7): 1755-1767. |
| [9] | 黄嘉雯, 潘之怡, 薛文君, 廉源沛, 徐建达. 植物源性囊泡与恶性肿瘤治疗:跨物种交流并调节宿主细胞反应[J]. 中国组织工程研究, 2026, 30(7): 1828-1838. |
| [10] | 王白燕, 杨 树, 王弋鸣, 吴梦晴, 肖 瑀, 郭梓璇, 张博艺, 冯书营. 外泌体递送CRISPR/Cas系统在靶细胞内可实现基因编辑[J]. 中国组织工程研究, 2026, 30(7): 1839-1849. |
| [11] | 王振泽, 刘奋德, 张 瑞, 李武军. 间充质干细胞治疗下肢动脉硬化闭塞症:系统评价和Meta分析[J]. 中国组织工程研究, 2026, 30(7): 1869-1876. |
| [12] | 彭志伟, 陈 雷, 佟 磊. 木犀草素促进糖尿病小鼠创面愈合的作用与机制[J]. 中国组织工程研究, 2026, 30(6): 1398-1406. |
| [13] | 侯超文, 李兆进, 孔健达, 张树立. 骨骼肌衰老主要生理变化及运动的多机制调控作用[J]. 中国组织工程研究, 2026, 30(6): 1464-1475. |
| [14] | 刘可新, 郝凯敏, 庄文越, 李正祎. 自噬相关基因在肺纤维化模型中的表达:生物信息学分析及实验验证[J]. 中国组织工程研究, 2026, 30(5): 1129-1138. |
| [15] | 余慧芬, 莫李存, 程乐平. 5 -羟色胺在组织损伤修复中的地位与角色[J]. 中国组织工程研究, 2026, 30(5): 1196-1206. |
1.1.7 检索策略 以PubMed 数据库为例,检索策略见图1。
1.1.8 检索文献量 共检索出相关文献497篇,其中英文文献432篇,中文文献65篇。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
文题释义:
基因转染:是指通过物理、化学或生物手段将外源基因(如DNA或RNA)人工导入真核细胞内的技术,以实现目的基因在宿主细胞中的表达或功能研究。
组织纤维化:是指因慢性损伤或炎症导致组织内细胞外基质异常沉积、结构硬化的病理过程,本质为修复失衡引起的瘢痕化反应。常见于肝脏、肺、肾脏、心脏等器官,可进展为肝硬化、肺纤维化、肾纤维化等终末期病变。
#br#
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
目前,基因工程化干细胞分泌外泌体治疗策略因其低免疫原性及靶向递送能力成为组织修复领域的研究热点,相较于直接使用工程化干细胞的细胞治疗策略而言,基因工程化干细胞分泌外泌体的无细胞疗法有效避免了干细胞移植风险;然而,当前研究仍存在以下局限:递送效率不足、长期安全性存疑、多数研究停留于小动物模型,缺乏大动物实验和长期安全性数据评估。未来的研究将进一步优化外泌体靶向修饰技术以提高外泌体靶向性,并探讨联合治疗策略,促进基因工程化外泌体与微流控技术的有效结合,实现更高效、更精准的外泌体生产与应用,还将加强临床转换研究以推动工程化外泌体的广泛临床应用。
#br#
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||