中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (5): 1196-1206.doi: 10.12307/2026.002
• 组织构建综述 tissue construction review • 上一篇 下一篇
余慧芬1,莫李存1,程乐平1,2,3
收稿日期:
2024-11-18
接受日期:
2025-01-17
出版日期:
2026-02-18
发布日期:
2025-06-25
通讯作者:
程乐平,博士,教授,硕士生导师,博士生导师,广西医科大学再生医学与医用生物资源开发应用省部共建协同创新中心,广西再生医学重点实验室,广西壮族自治区南宁市 530021;广西医科大学基础医学院,神经科学研究所,广西脑科学研究重点实验室,广西壮族自治区卫生健康委员会脑功能与脑疾病基础研究重点实验室(广西医科大学),广西壮族自治区南宁市 530021;长寿与老年相关疾病教育部重点实验室,广西壮族自治区南宁市 530021
作者简介:
余慧芬,女,1997年生,福建省大田县人,汉族,2024年广西医科大学毕业,硕士,主要从事非神经元细胞转分化为神经元的研究。
基金资助:
Yu Huifen1, Mo Licun1, Cheng Leping1, 2, 3
Received:
2024-11-18
Accepted:
2025-01-17
Online:
2026-02-18
Published:
2025-06-25
Contact:
Cheng Leping, PhD, Professor, Master’s supervisor, Doctoral supervisor, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Nanning 530021, Guangxi Zhuang Autonomous Region, China; Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, China
About author:
Yu Huifen, MS, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Nanning 530021, Guangxi Zhuang Autonomous Region, China
Supported by:
摘要:
文题释义:
5 -羟色胺:由必需氨基酸色氨酸合成而来的一种生物化学信使和调节剂,主要位于中枢神经系统、胃肠道和血小板中,介导包括神经传导、胃肠运动、止血和心血管系统完整性。
组织修复:局部组织、细胞因某种致病因素的作用遭受损伤和死亡后,由邻近健康细胞的再生来修补,以恢复组织完整性的过程。
背景:5-羟色胺系统是哺乳动物体内最早发育的系统之一,在生命周期的多个生理过程中发挥关键作用。传统研究主要集中于5-羟色胺在生理过程及中枢性疾病中的调节功能。近年来的研究显示,5-羟色胺系统在再生医学中也具有重要作用。
目的:综述中枢5-羟色胺系统在脑损伤、脊髓损伤和骨重塑中的修复作用,以及外周5-羟色胺系统在肝脏、胰腺、肠道、皮肤等组织中的修复和再生作用,为干细胞治疗、组织工程和再生医学的治疗策略提供新的思路。
方法:检索PubMed和Google scholar数据库,检索词为:“5-HT, regeneration,tissue repair,5-HT and tissue repair,brain injury,spinal cord injury,bone reconstruction,liver regeneration,enteric nerve regeneration,tissue fibrosis,pancreatic regeneration,skin repair,inflammation”,按照纳入和排除标准对文献进行筛选,最终纳入118篇文献进行综述分析。
结果与结论:①中枢5-羟色胺系统能促进包括脑损伤、脊髓损伤和骨重塑等损伤的细胞再生,并促进相应的组织修复;②外周5-羟色胺系统对包括肝脏、胰腺、肠道、皮肤等组织的修复有积极作用;③5-羟色胺系统在促进组织修复过程中也有不利的一面,例如促进组织器官纤维化和促进炎症,故应谨慎使用。
https://orcid.org/0000-0001-6198-0354 (余慧芬)
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
中图分类号:
余慧芬, 莫李存, 程乐平. 5 -羟色胺在组织损伤修复中的地位与角色[J]. 中国组织工程研究, 2026, 30(5): 1196-1206.
Yu Huifen, Mo Licun, Cheng Leping. The position and role of 5-hydroxytryptamine in the repair of tissue injury[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1196-1206.
[1] ROSEN CJ. Serotonin rising--the bone, brain, bowel connection. N Engl J Med. 2009; 360(10):957-959. [2] OKATY BW, COMMONS KG, DYMECKI SM. Embracing diversity in the 5-HT neuronal system. Nat Rev Neurosci. 2019;20(7):397-424. [3] XUE C, LI G, ZHENG Q, et al. Tryptophan metabolism in health and disease. Cell Metab. 2023;35(8):1304-1326. [4] BARNES NM, AHERN GP, BECAMEL C, et al. International Union of Basic and Clinical Pharmacology. CX. Classification of receptors for 5-hydroxytryptamine; pharmacology and function. Pharmacol Rev. 2021;73(1):310-520. [5] DODDS KN, TRAVIS L, KYLOH MA, et al. The gut-brain axis: spatial relationship between spinal afferent nerves and 5-HT-containing enterochromaffin cells in mucosa of mouse colon. Am J Physiol Gastrointest Liver Physiol. 2022;322(5):G523-G533. [6] MARGOLIS KG, CRYAN JF, MAYER EA. The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology. 2021;160(5):1486-1501. [7] ZHAO S, KHOO S, NG SC, et al. Brain functional network and amino acid metabolism association in females with subclinical depression. Int J Environ Res Public Health. 2022;19(6):3321. [8] CAI X, LIU H, FENG B, et al. A D2 to D1 shift in dopaminergic inputs to midbrain 5-HT neurons causes anorexia in mice. Nat Neurosci. 2022;25(5):646-658. [9] DE DEURWAERDERE P, DI GIOVANNI G. 5-HT interaction with other neurotransmitters: An overview. Prog Brain Res. 2021;259:1-5. [10] BERGER M, GRAY JA, ROTH BL. The expanded biology of serotonin. Annu Rev Med. 2009;60:355-366. [11] GERSHON MD. The shaggy dog story of enteric signaling: serotonin, a molecular megillah. Adv Exp Med Biol. 2022;1383: 307-318. [12] NEUMANN J, HOFMANN B, DHEIN S, et al. Cardiac roles of serotonin (5-HT) and 5-HT-receptors in health and disease. Int J Mol Sci. 2023;24(5):4765. [13] SHAH PA, PARK CJ, SHAUGHNESSY MP, et al. Serotonin as a mitogen in the gastrointestinal tract: revisiting a familiar molecule in a new role. Cell Mol Gastroenterol Hepatol. 2021;12(3):1093-1104. [14] NAJJAR SA, HUNG LY, MARGOLIS KG. Serotonergic Control of Gastrointestinal Development, Motility, and Inflammation. Compr Physiol. 2023;13(3):4851-4868. [15] HUANG CX, ZHAO Y, MAO J, et al. An injury-induced serotonergic neuron subpopulation contributes to axon regrowth and function restoration after spinal cord injury in zebrafish. Nat Commun. 2021;12(1):7093. [16] ESPINERA AR, OGLE ME, GU X, et al. Citalopram enhances neurovascular regeneration and sensorimotor functional recovery after ischemic stroke in mice. Neuroscience. 2013;247:1-11. [17] JIN Y, DOUGHERTY SE, WOOD K, et al. Regrowth of serotonin axons in the adult mouse brain following injury. Neuron. 2016;91(4):748-762. [18] GOLDMAN L, SIDDIQUI EM, KHAN A, et al. Understanding acquired brain injury: a review. Biomedicines. 2022;10(9):2167. [19] MAAS AIR, MENON DK, MANLEY GT, et al. Traumatic brain injury: progress and challenges in prevention, clinical care, and research. Lancet Neurol. 2022;21(11):1004-1060. [20] HAWTHORNE AL, HU H, KUNDU B, et al. The unusual response of serotonergic neurons after CNS Injury: lack of axonal dieback and enhanced sprouting within the inhibitory environment of the glial scar. J Neurosci. 2011;31(15):5605-5616. [21] KAJSTURA TJ, DOUGHERTY SE, LINDEN DJ. Serotonin axons in the neocortex of the adult female mouse regrow after traumatic brain injury. J Neurosci Res. 2018;96(4):512-526. [22] FEIGIN VL, BRAININ M, NORRVING B, et al. World Stroke Organization (WSO): global stroke fact sheet 2022. Int J Stroke. 2022;17(1):18-29. [23] DILLEN Y, KEMPS H, GERVOIS P, et al. Adult neurogenesis in the subventricular zone and its regulation after ischemic stroke: implications for therapeutic approaches. Transl Stroke Res. 2020;11(1):60-79. [24] ZAHRAI A, VAHID-ANSARI F, DAIGLE M, et al. Fluoxetine-induced recovery of serotonin and norepinephrine projections in a mouse model of post-stroke depression. Transl Psychiatry. 2020;10(1):334. [25] VILLA RF, FERRARI F, MORETTI A. Post-stroke depression: Mechanisms and pharmacological treatment. Pharmacol Ther. 2018;184:131-144. [26] KOT M, NEGLUR PK, PIETRASZEWSKA A, et al. Boosting neurogenesis in the adult hippocampus using antidepressants and mesenchymal stem cells. Cells. 2022;11(20): 3234. [27] CAMPERO-ROMERO AN, REAL FH, SANTANA-MARTíNEZ RA, et al. Extracellular vesicles from neural progenitor cells promote functional recovery after stroke in mice with pharmacological inhibition of neurogenesis. Cell Death Discov. 2023; 9(1):272. [28] DONG P, LI Q, HAN H. HIF‑1alpha in cerebral ischemia (Review). Mol Med Rep. 2022;25(2): 41. [29] SCHNEIDER CL, MAJEWSKA AK, BUSZA A, et al. Selective serotonin reuptake inhibitors for functional recovery after stroke: similarities with the critical period and the role of experience-dependent plasticity. J Neurol. 2021;268(4):1203-1209. [30] JANOWITZ HN, LINDEN DJ. Chronic Treatment with Serotonin Selective Reuptake Inhibitors Does Not Affect Regrowth of Serotonin Axons Following Amphetamine Injury in the Mouse Forebrain. eNeuro. 2024;11(2):ENEURO.0444-22.2023. [31] SAPONARA E, GRABLIAUSKAITE K, BOMBARDO M, et al. Serotonin promotes acinar dedifferentiation following pancreatitis-induced regeneration in the adult pancreas. J Pathol. 2015;237(4):495-507. [32] FOUAD K, RANK MM, VAVREK R, et al. Locomotion after spinal cord injury depends on constitutive activity in serotonin receptors. J Neurophysiol. 2010; 104(6):2975-2984. [33] ZHENG B, TUSZYNSKI MH. Regulation of axonal regeneration after mammalian spinal cord injury. Nat Rev Mol Cell Biol. 2023;24(6):396-413. [34] BERNATONIENE J, SCIUPOKAS A, KOPUSTINSKIENE DM, et al. Novel Drug Targets and Emerging Pharmacotherapies in Neuropathic Pain. Pharmaceutics. 2023; 15(7):1799. [35] ALILAIN WJ, HORN KP, HU H, et al. Functional regeneration of respiratory pathways after spinal cord injury. Nature. 2011;475(7355):196-200. [36] GONZALEZ-ROTHI EJ, ALLEN LL, SEVEN YB, et al. Prolonged intermittent hypoxia differentially regulates phrenic motor neuron serotonin receptor expression in rats following chronic cervical spinal cord injury. Exp Neurol. 2024;378:114808. [37] ALAM T, MARUYAMA H, LI C, et al. Axotomy-induced HIF-serotonin signalling axis promotes axon regeneration in C. elegans. Nat Commun. 2016;7:10388. [38] TAI W, DU X, CHEN C, et al. NG2 glia reprogramming induces robust axonal regeneration after spinal cord injury. iScience. 2024;27(2):108895. [39] LEIBINGER M, ZEITLER C, GOBRECHT P, et al. Transneuronal delivery of hyper-interleukin-6 enables functional recovery after severe spinal cord injury in mice. Nat Commun. 2021;12(1): 391. [40] FAUSS GNK, HUDSON KE, GRAU JW. Role of Descending Serotonergic Fibers in the Development of Pathophysiology after Spinal Cord Injury (SCI): Contribution to Chronic Pain, Spasticity, and Autonomic Dysreflexia. Biology (Basel). 2022;11(2): 234. [41] RYU Y, OGATA T, NAGAO M, et al. Early escitalopram administration as a preemptive treatment strategy against spasticity after contusive spinal cord injury in rats. Sci Rep. 2021;11(1):7120. [42] DAPONTE V, HENKE K, DRISSI H. Current perspectives on the multiple roles of osteoclasts: Mechanisms of osteoclast-osteoblast communication and potential clinical implications. Elife. 2024;13:e95083. [43] CHABBI-ACHENGLI Y, COUDERT AE, CALLEBERT J, et al. Decreased osteoclastogenesis in serotonin-deficient mice. Proc Natl Acad Sci U S A. 2012;109(7):2567-2572. [44] YADAV VK, OURY F, SUDA N, et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 2009;138(5): 976-989. [45] TAKEDA S, ELEFTERIOU F, LEVASSEUR R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002; 111(3):305-317. [46] ELEFTERIOU F, AHN JD, TAKEDA S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514-520. [47] OURY F, YADAV VK, WANG Y, et al. CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons. Genes Dev. 2010; 24(20):2330-2342. [48] SHI H, CHEN M. The brain-bone axis: unraveling the complex interplay between the central nervous system and skeletal metabolism. Eur J Med Res. 2024;29(1):317. [49] COLLET C, COUDERT AE. Bone and Serotonin Receptor Type 2B[M]//Maroteaux L, Monassier L. 5-HT2B receptors: from molecular biology to clinical applications. Switzerland: Springer Nature Switzerland AG, 2021:133-142. [50] LIU Y, WEI JA, LUO Z, et al. A gut-brain axis mediates sodium appetite via gastrointestinal peptide regulation on a medulla-hypothalamic circuit. Sci Adv. 2023;9(7):eadd5330. [51] SPENCER NJ, KEATING DJ. Role of 5-HT in the enteric nervous system and enteroendocrine cells. Br J Pharmacol. 2025;182(3):471-483. [52] LIU N, SUN S, WANG P, et al. The mechanism of secretion and metabolism of gut-derived 5-hydroxytryptamine. Int J Mol Sci. 2021; 22(15):7931. [53] ZARET KS, GROMPE M. Generation and regeneration of cells of the liver and pancreas. Science. 2008;322(5907):1490-1494. [54] MICHALOPOULOS GK, BHUSHAN B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol. 2021;18(1):40-55. [55] KOPASZ AG, PUSZTAI DZ, KARKAS R, et al. A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver. BMC Biol. 2022;20(1):74. [56] STARLINGER P, ASSINGER A, HAEGELE S, et al. Evidence for serotonin as a relevant inducer of liver regeneration after liver resection in humans. Hepatology. 2014; 60(1):257-266. [57] NOCITO A, GEORGIEV P, DAHM F, et al. Platelets and platelet-derived serotonin promote tissue repair after normothermic hepatic ischemia in mice. Hepatology. 2007; 45(2):369-376. [58] LESURTEL M, GRAF R, ALEIL B, et al. Platelet-derived serotonin mediates liver regeneration. Science. 2006;312(5770):104-107. [59] TZIROGIANNIS KN, KOURENTZI KT, ZYGA S, et al. Effect of 5-HT7 receptor blockade on liver regeneration after 60-70% partial hepatectomy. BMC Gastroenterol. 2014;14:201. [60] TIAN Y, GRAF R, EL-BADRY AM, et al. Activation of serotonin receptor-2B rescues small-for-size liver graft failure in mice. Hepatology. 2011; 53(1):253-262. [61] TSUCHIDA T, FRIEDMAN SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14(7):397-411. [62] RUDDELL RG, MANN DA, RAMM GA. The function of serotonin within the liver. J Hepatol. 2008;48(4):666-675. [63] OMENETTI A, YANG L, GAINETDINOV RR, et al. Paracrine modulation of cholangiocyte serotonin synthesis orchestrates biliary remodeling in adults. Am J Physiol Gastrointest Liver Physiol. 2011;300(2):G303-G315. [64] KYRITSI K, CHEN L, O’BRIEN A, et al. Modulation of the tryptophan hydroxylase 1/monoamine oxidase‐a/5‐Hydroxytryptamine/5‐Hydroxytry‐ ptamine receptor 2A/2B/2C Axis regulates biliary proliferation and liver fibrosis during cholestasis. Hepatology. 2020;71(3): 990-1008. [65] FANG Y, LIU C, SHU B, et al. Axis of serotonin -pERK-YAP in liver regeneration. Life Sci. 2018;209:490-497. [66] GRIJALVA JL, HUIZENGA M, MUELLER K, et al. Dynamic alterations in Hippo signaling pathway and YAP activation during liver regeneration. Am J Physiol Gastrointest Liver Physiol. 2014;307(2):G196-G204. [67] NAITO K, MOTEKI H, KIMURA M, et al. Role of serotonin in liver regeneration. Curr Top Pharmacol. 2019;23:39-44. [68] WEN Y, EMONTZPOHL C, XU L, et al. Interleukin‐33 facilitates liver regeneration through serotonin‐involved gut‐liver axis. Hepatology. 2023;77(5): 1580-1592. [69] NAGAO Y, AKAHOSHI T, KAMORI M, et al. Liver regeneration is promoted by increasing serotonin content in rat liver with secondary biliary cirrhosis. Hepatol Res. 2011;41(8):784-794. [70] RUDDELL RG, OAKLEY F, HUSSAIN Z, et al. A role for serotonin (5-HT) in hepatic stellate cell function and liver fibrosis. Am J Pathol. 2006;169(3):861-876. [71] EBRAHIMKHANI MR, OAKLEY F, MURPHY LB, et al. Stimulating healthy tissue regeneration by targeting the 5-HT(2)B receptor in chronic liver disease. Nat Med. 2011;17(12):1668-1673. [72] POLAT B, HALICI Z, CADIRCI E, et al. Liver 5-HT7 receptors: A novel regulator target of fibrosis and inflammation-induced chronic liver injury in vivo and in vitro. Int Immunopharmacol. 2017;43:227-235. [73] FABRE A, MARCHAL-SOMME J, MARCHAND-ADAM S, et al. Modulation of bleomycin-induced lung fibrosis by serotonin receptor antagonists in mice. Eur Respir J. 2008;32(2):426-436. [74] ELAIDY SM, ESSAWY SS. The antifibrotic effects of alveolar macrophages 5-HT2C receptors blockade on bleomycin-induced pulmonary fibrosis in rats. Pharmacol Rep. 2016;68(6):1244-1253. [75] TAWFIK MK, MAKARY S. 5-HT7 receptor antagonism (SB-269970) attenuates bleomycin-induced pulmonary fibrosis in rats via downregulating oxidative burden and inflammatory cascades and ameliorating collagen deposition: Comparison to terguride. Eur J Pharmacol. 2017;814:114-123. [76] DHALLA NS, MOTA KO, ELIMBAN V, et al. Role of vasoactive hormone-induced signal transduction in cardiac hypertrophy and heart failure. Cells. 2024;13(10):856. [77] SHIMIZU K, SUNAGAWA Y, FUNAMOTO M, et al. The selective serotonin 2A receptor antagonist sarpogrelate prevents cardiac hypertrophy and systolic dysfunction via inhibition of the ERK1/2-GATA4 signaling pathway. Pharmaceuticals (Basel). 2021; 14(12):1268. [78] TARBIT E, SINGH I, PEART JN, et al. Increased release of serotonin from rat primary isolated adult cardiac myofibroblasts. Sci Rep. 2021; 11(1):20376. [79] WALDUM H, WAHBA A. Serotonin-A Driver of Progressive Heart Valve Disease. Front Cardiovasc Med. 2022;9:774573. [80] PANG Q, JIN H, WANG Y, et al. Depletion of serotonin relieves concanavalin A-induced liver fibrosis in mice by inhibiting inflammation, oxidative stress, and TGF-beta1/Smads signaling pathway. Toxicol Lett. 2021;340:123-132. [81] PYTLIAK M, VARGOVÁ V, MECHÍROVÁ V, et al. Serotonin receptors - from molecular biology to clinical applications. Physiol Res. 2011;60(1):15-25. [82] SAGONAS I, DAOUSSIS D. Serotonin and systemic sclerosis. An emerging player in pathogenesis. Joint Bone Spine. 2022;89(3): 105309. [83] ZHAO M, WU J, WU H, et al. Clinical Treatment Options in Scleroderma: Recommendations and Comprehensive Review. Clin Rev Allergy Immunol. 2022; 62(2):273-291. [84] BAHR FS, RICKE-HOCH M, PONIMASKIN E, et al. Serotonin receptors in myocardial infarction: friend or foe? ACS Chem Neurosci. 2024;15(8):1619-1634. [85] MARTINS AM, ASCENSO A, RIBEIRO HM, et al. The Brain–skin connection and the pathogenesis of psoriasis: a review with a focus on the serotonergic system. Cells. 2020;9(4):796. [86] JOHNSON BZ, STEVENSON AW, PRÊLE CM, et al. The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines. 2020;8(5):101. [87] GUPTA D, KAUSHIK D, MOHAN V. Role of neurotransmitters in the regulation of cutaneous wound healing. Exp Brain Res. 2022;240(6):1649-1659. [88] XU H, ZHANG J, JIANG Y, et al. Fractal analysis of rat dermal tissue in the different injury states. Int Wound J. 2022;19(5): 1016-1022. [89] SAMUELSSON A, ABDIU A, WACKENFORS A, et al. Serotonin kinetics in patients with burn injuries: a comparison between the local and systemic responses measured by microdialysis—a pilot study. Burns. 2008; 34(5):617-622. [90] SADIQ A, MENCHETTI I, SHAH A, et al. 5-HT1A receptor function makes wound healing a happier process. Front Pharmacol. 2018;9:1406. [91] SADIQ A, SHAH A, JESCHKE MG, et al. The role of serotonin during skin healing in post-thermal injury. Int J Mol Sci. 2018; 19(4):1034. [92] BANSKOTA S, KHAN WI. Gut-derived serotonin and its emerging roles in immune function, inflammation, metabolism and the gut-brain axis. Curr Opin Endocrinol Diabetes Obes. 2022;29(2):177-182. [93] WU H, DENNA TH, STORKERSEN JN, et al. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol Res. 2019; 140:100-114. [94] KOOPMAN N, KATSAVELIS D, HOVE AST, et al. The multifaceted role of serotonin in intestinal homeostasis. Int J Mol Sci. 2021;22(17):9487. [95] WAN M, DING L, WANG D, et al. Serotonin: a potent immune cell modulator in autoimmune diseases. Front Immunol. 2020;11:186. [96] SANIDAD KZ, RAGER SL, CARROW HC, et al. Gut bacteria–derived serotonin promotes immune tolerance in early life. Sci Immunol. 2024;9(93):eadj4775. [97] BANSKOTA S, GHIA JEKHAN WI. Serotonin in the gut: blessing or a curse. Biochimie. 2019;161:56-64. [98] GRONDIN JA, KHAN WI. Emerging Roles of Gut Serotonin in Regulation of Immune Response, Microbiota Composition and Intestinal Inflammation. J Can Assoc Gastroenterol. 2023;7(1):88-96. [99] HAQ S, WANG H, GRONDIN J, et al. Disruption of autophagy by increased 5-HT alters gut microbiota and enhances susceptibility to experimental colitis and Crohn’s disease. Sci. Adv. 2021;7(45): eabi6442. [100] HATAMNEJAD MR, BARADARAN GHAVAMI S, SHIRVANI M, et al. Selective serotonin reuptake inhibitors and inflammatory bowel disease; Beneficial or malpractice. Front Immunol. 2022;13:980189. [101] BREUNIG M, MERKLE J, WAGNER M, et al. Modeling plasticity and dysplasia of pancreatic ductal organoids derived from human pluripotent stem cells. Cell Stem Cell. 2021;28(6):1105-1124. [102] PURI S, FOLIAS AE, HEBROK M. Plasticity and dedifferentiation within the pancreas: development, homeostasis, and disease. Cell Stem Cell. 2015;16(1):18-31. [103] GRIMONT A, LEACH SD, CHANDWANI R. Uncertain Beginnings: Acinar and Ductal Cell Plasticity in the Development of Pancreatic Cancer. Cell Mol Gastroenterol Hepatol. 2022; 13(2):369-382. [104] MEANS AL, MESZOELY IM, SUZUKI K, et al. Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates. Development. 2005;132(16):3767-3776. [105] JENSEN JN, CAMERON E, GARAY MV, et al. Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration. Gastroenterology. 2005;128(3):728-741. [106] FALCOMATÀ C, SAUR D. Self-renewal equality in pancreas homeostasis, regeneration, and cancer. Cell Rep. 2021; 37(11):110135. [107] STANGER BZ, HEBROK M. Control of cell identity in pancreas development and regeneration. Gastroenterology. 2013; 144(6): 1170-1179. [108] MANTOVANI MC, SILVA IBB, LOJUDICE FH, et al. Pancreatic stem cells and regenerative medicine of endocrine pancreas//DOS SANTOS GOLDENBERG RC, DE CARVALHO AC. Resident Stem Cells and Regenerative Therapy: Sources and Clinical Applications. Elsevier Inc. 2024:75-103. [109] MOON JH, KIM YG, KIM K, et al. Serotonin regulates adult beta-cell mass by stimulating perinatal beta-cell proliferation. Diabetes. 2020;69(2):205-214. [110] SHARKEY KA, MAWE GM. The enteric nervous system. Physiol Rev. 2023;103(2): 1487-1564. [111] LIU MT, KUAN YH, WANG J, et al. 5-HT4 receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J Neurosci. 2009;29(31):9683-9699. [112] MATSUYOSHI H, KUNIYASU H, OKUMURA M, et al. A 5-HT(4)-receptor activation-induced neural plasticity enhances in vivo reconstructs of enteric nerve circuit insult. Neurogastroenterol Motil. 2010;22(7):806-813. [113] BELKIND-GERSON J, HOTTA R, NAGY N, et al. Colitis induces enteric neurogenesis through a 5-HT4-dependent mechanism. Inflamm Bowel Dis. 2015;21(4):870-878. [114] LI Z, CHALAZONITIS A, HUANG YY, et al. Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J Neurosci. 2011; 31(24):8998-9009. [115] YADAV VK, BALAJI S, SURESH PS, et al. Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat Med. 2010;16(3):308-312. [116] YADAV VK, RYU JH, SUDA N, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell. 2008;135(5):825-837. [117] CUI Y, NIZIOLEK PJ, MACDONALD BT, et al. Lrp5 functions in bone to regulate bone mass. Nat Med. 2011;17(6):684-691. [118] LIMA GM, CORAZZA BJ, MORAES RM, et al. The effect of an inhibitor of gut serotonin (LP533401) during the induction of periodontal disease. J Periodontal Res. 2016;51(5):661-668. |
[1] | 阴勇成, 赵相瑞, 杨志杰, 李 政, 李 芳, 宁 斌. 过氧化物还原酶1在脊髓损伤后小胶质细胞炎症反应中的作用及机制[J]. 中国组织工程研究, 2026, 30(5): 1106-1113. |
[2] | 张 迪, 赵 君, 马广悦, 孙 晖, 蒋 蓉. 基于高通量测序技术分析慢性社会挫败应激小鼠抑郁样行为的作用机制[J]. 中国组织工程研究, 2026, 30(5): 1139-1146. |
[3] | 李郝静, 王 新, 宋成林, 张胜男, 陈云昕. 上斜方肌处体外冲击波与运动控制训练治疗慢性非特异性颈痛[J]. 中国组织工程研究, 2026, 30(5): 1162-1170. |
[4] | 刘 煜, 雷森林, 周锦涛, 刘 辉, 李先辉. 有氧和抗阻运动改善肥胖相关认知障碍的作用机制[J]. 中国组织工程研究, 2026, 30(5): 1171-1183. |
[5] | 陶云飞, 彭 莉. 血流限制在急性抗阻运动中对内皮功能相关炎性因子的影响[J]. 中国组织工程研究, 2026, 30(5): 1184-1195. |
[6] | 傅振燚, 李俊豪, 张雅婷, 何昀锴, 刘俊妤, 魏云昊, 刘佳鑫. 施万细胞促进外周神经再生:回顾与展望[J]. 中国组织工程研究, 2026, 30(5): 1236-1246. |
[7] | 刘新月, 李春年, 李一卓, 徐世芳. 口腔牙槽骨缺损的再生修复[J]. 中国组织工程研究, 2026, 30(5): 1247-1259. |
[8] | 温小龙, 翁锡全, 冯 瑶, 曹文燕, 刘玉倩, 王海涛, . 炎症对2型糖尿病患者血清抗菌多肽及铁代谢相关参数影响的Meta分析[J]. 中国组织工程研究, 2026, 30(5): 1294-1301. |
[9] | 王 杰, 黄 芮, 张 也, 首朝曦, 姚 杰, 刘辰希, 廖 健. 益生菌在种植体周炎中的作用及机制[J]. 中国组织工程研究, 2026, 30(4): 901-907. |
[10] | 丁 宇, 陈婧雯, 陈秀燕, 施慧敏, 杨雨蝶, 周美启, 崔 帅, . 循环炎症蛋白与心肌肥厚:来自GWAS Catalog与芬兰数据库欧洲群体的大样本分析[J]. 中国组织工程研究, 2026, 30(4): 1047-1057. |
[11] | 陈伊娴, 陈 晨, 卢立恒, 汤锦鹏, 于晓巍. 雷公藤甲素治疗骨关节炎的网络药理学分析与实验验证[J]. 中国组织工程研究, 2026, 30(4): 805-815. |
[12] | 刘晓红, 赵 天, 穆云萍, 冯文金, 吕存声, 张智永, 赵子建, 李芳红. 脱细胞真皮基质水凝胶促进大鼠皮肤创面的愈合[J]. 中国组织工程研究, 2026, 30(2): 395-403. |
[13] | 左 娜, 唐 琪, 于 猛, 陶 凯. 脂肪干细胞源性外泌体中miR-196b-5p对大鼠烧伤创面愈合的影响[J]. 中国组织工程研究, 2026, 30(1): 43-49. |
[14] | 张婷婷, 李亚龙, 岳浩迪, 李颜君, 耿熙炆, 张玉薇, 刘小转. 不同鼠龄骨髓间充质干细胞来源外泌体保护放射性肺损伤[J]. 中国组织工程研究, 2026, 30(1): 1-9. |
[15] | 王 峥, 程 吉, 于金龙, 刘文红, 王召红, 周鲁星. 水凝胶材料在脑卒中治疗中的应用进展与未来展望[J]. 中国组织工程研究, 2025, 29(在线): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||