[1] MARTIN TG, JUARROS MA, LEINWAND LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol. 2023;20(5):347-363.
[2] MABLY JD, WANG DZ. Long non-coding RNAs in cardiac hypertrophy and heart failure: functions, mechanisms and clinical prospects. Nat Rev Cardiol. 2024;21(5):326-345.
[3] ZHAO D, ZHONG G, LI J, et al. Targeting E3 Ubiquitin Ligase WWP1 Prevents Cardiac Hypertrophy Through Destabilizing DVL2 via Inhibition of K27-Linked Ubiquitination. Circulation. 2021;144(9): 694-711.
[4] LIM GB. Piezo1 senses pressure overload and initiates cardiac hypertrophy. Nat Rev Cardiol. 2022;19(8):503.
[5] CLUNTUN AA, BADOLIA R, LETTLOVA S, et al. The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure. Cell Metab. 2021;33(3):629-648.e10.
[6] RITTERHOFF J, TIAN R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol. 2023;20(12):812-829.
[7] HALLIWELL B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol. 2024;25(1):13-33.
[8] PENG F, LIAO M, JIN W, et al. 2-APQC, a small-molecule activator of Sirtuin-3 (SIRT3), alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis. Signal Transduct Target Ther. 2024;9(1):133.
[9] LEE YC, JOU YC, CHOU WC, et al. Ellagic acid protects against angiotensin II-induced hypertrophic responses through ROS-mediated MAPK pathway in H9c2 cells. Environ Toxicol. 2024;39(5):3253-3263.
[10] CHENG T, LIU C, WANG Y, et al. A novel histone deacetylase inhibitor Se-SAHA attenuates isoproterenol-induced heart failure via antioxidative stress and autophagy inhibition. Toxicol Appl Pharmacol. 2024;487:116957.
[11] BIN S, XINYI F, HUAN P, et al. SOX4 as a potential therapeutic target for pathological cardiac hypertrophy. Eur J Pharmacol. 2023;958:176071.
[12] CHEN G, AN N, SHEN J, et al. Fibroblast growth factor 18 alleviates stress-induced pathological cardiac hypertrophy in male mice. Nat Commun. 2023;14(1):1235.
[13] ZHENG X, SU F, LEI M, et al. The novel peptide athycaltide-1 attenuates Ang II-induced pathological myocardial hypertrophy by reducing ROS and inhibiting the activation of CaMKII and ERK1/2. Eur J Pharmacol. 2023;957:175969.
[14] LIN X, FEI MZ, HUANG AX, et al. Breviscapine protects against pathological cardiac hypertrophy by targeting FOXO3a-mitofusin-1 mediated mitochondrial fusion. Free Radic Biol Med. 2024;212:477-492.
[15] PALIOURA D, MELLIDIS K, IOANNIDOU-KABOURI K, et al. PPARδ activation improves cardiac mitochondrial homeostasis in desmin deficient mice but does not alleviate systolic dysfunction. J Mol Cell Cardiol. 2023;183:27-41.
[16] ZHENG H, HUANG S, WEI G, et al. CircRNA Samd4 induces cardiac repair after myocardial infarction by blocking mitochondria-derived ROS output. Mol Ther. 2022;30(11):3477-3498.
[17] LI X, FLYNN ER, DO CARMO JM, et al. Direct Cardiac Actions of Sodium-Glucose Cotransporter 2 Inhibition Improve Mitochondrial Function and Attenuate Oxidative Stress in Pressure Overload-Induced Heart Failure. Front Cardiovasc Med. 2022;9:859253.
[18] ASHRAFIZADEH M, DAI J, TORABIAN P, et al. Circular RNAs in EMT-driven metastasis regulation: modulation of cancer cell plasticity, tumorigenesis and therapy resistance. Cell Mol Life Sci. 2024;81(1):214.
[19] SANGER HL, KLOTZ G, RIESNER D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A. 1976;73(11):3852-3856.
[20] CHEN C, YU H, HAN F, et al. Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness. Mol Cancer. 2022;21(1):46.
[21] XU L, ZHANG J, LI L, et al. A circular RNA produced by LRBA promotes cirrhotic mouse liver regeneration through facilitating the ubiquitination degradation of p27. Liver Int. 2023;43(7):1558-1576.
[22] WANG S, ZHU X, HAO Y, et al. ALKBH5-mediated m6A modification of circFOXP1 promotes gastric cancer progression by regulating SOX4 expression and sponging miR-338-3p. Commun Biol. 2024;7(1):565.
[23] LIANG Y, ZHAO B, SHEN Y, et al. Elucidating the Role of circTIAM1 in Guangling Large-Tailed Sheep Adipocyte Proliferation and Differentiation via the miR-485-3p/PLCB1 Pathway. Int J Mol Sci. 2024;25(9):4588.
[24] YU F, FANG P, FANG Y, et al. Circ_0027791 contributes to the growth and immune evasion of hepatocellular carcinoma via the miR-496/programmed cell death ligand 1 axis in an m6A-dependent manner. Environ Toxicol. 2024;39(6):3721-3733.
[25] SHAO M, YE S, CHEN Y, et al. Exosomes from hypoxic ADSCs ameliorate neuronal damage post spinal cord injury through circ-Wdfy3 delivery and inhibition of ferroptosis. Neurochem Int. 2024; 177:105759.
[26] LIN J, WANG X, ZHAI S, et al. Hypoxia-induced exosomal circPDK1 promotes pancreatic cancer glycolysis via c-myc activation by modulating miR-628-3p/BPTF axis and degrading BIN1. J Hematol Oncol. 2022;15(1):128.
[27] NIU D, WU Y, LIAN J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther. 2023;8(1):341.
[28] NEUFELDT D, SCHMIDT A, MOHR E, et al. Circular RNA circZFPM2 regulates cardiomyocyte hypertrophy and survival. Basic Res Cardiol. 2024. doi: 10.1007/s00395-024-01048-y.
[29] AUFIERO S, RECKMAN YJ, PINTO YM, et al. Circular RNAs open a new chapter in cardiovascular biology. Nat Rev Cardiol. 2019;16(8): 503-514.
[30] FANG X, AO X, XIAO D, et al. Circular RNA-circPan3 attenuates cardiac hypertrophy via miR-320-3p/HSP20 axis. Cell Mol Biol Lett. 2024;29(1):3.
[31] YUAN Q, SUN Y, YANG F, et al. CircRNA DICAR as a novel endogenous regulator for diabetic cardiomyopathy and diabetic pyroptosis of cardiomyocytes. Signal Transduct Target Ther. 2023;8(1):99.
[32] FU YL, TAO L, PENG FH, et al. GJA1-20k attenuates Ang II-induced pathological cardiac hypertrophy by regulating gap junction formation and mitochondrial function. Acta Pharmacol Sin. 2021; 42(4):536-549.
[33] CHEN J, DENG X, LIN T, et al. Ferrostatin-1 Reversed Chronic Intermittent Hypoxia-Induced Ferroptosis in Aortic Endothelial Cells via Reprogramming Mitochondrial Function. Nat Sci Sleep. 2024;16: 401-411.
[34] ZHANG Y, DA Q, CAO S, et al. HINT1 (Histidine Triad Nucleotide-Binding Protein 1) Attenuates Cardiac Hypertrophy Via Suppressing HOXA5 (Homeobox A5) Expression. Circulation. 2021;144(8): 638-654.
[35] RAI V, SHARMA P, AGRAWAL S, et al. Relevance of mouse models of cardiac fibrosis and hypertrophy in cardiac research. Mol Cell Biochem. 2017;424(1-2):123-145.
[36] LIU Z, MA Z, ZHANG H, et al. Ferulic acid increases intestinal Lactobacillus and improves cardiac function in TAC mice. Biomed Pharmacother. 2019;120:109482.
[37] CHENG Y, SHEN A, WU X, et al. Qingda granule attenuates angiotensin II-induced cardiac hypertrophy and apoptosis and modulates the PI3K/AKT pathway. Biomed Pharmacother. 2021;133:111022.
[38] LI H, XU JD, FANG XH, et al. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc Res. 2020;116(7): 1323-1334.
[39] LIM TB, ALIWARGA E, LUU TDA, et al. Targeting the highly abundant circular RNA circSlc8a1 in cardiomyocytes attenuates pressure overload induced hypertrophy. Cardiovasc Res. 2019;115(14):1998-2007.
[40] WANG L, FENG J, FENG X, et al. Exercise-induced circular RNA circUtrn is required for cardiac physiological hypertrophy and prevents myocardial ischaemia-reperfusion injury. Cardiovasc Res. 2023;119(16):2638-2652.
[41] WANG W, WANG L, YANG M, et al. Circ-SIRT1 inhibits cardiac hypertrophy via activating SIRT1 to promote autophagy. Cell Death Dis. 2021;12(11):1069.
[42] ZHU Y, ZHENG C, ZHANG R, et al. Circ-Ddx60 contributes to the antihypertrophic memory of exercise hypertrophic preconditioning. J Adv Res. 2023;46:113-121.
[43] WU N, XU J, DU WW, et al. YAP Circular RNA, circYap, Attenuates Cardiac Fibrosis via Binding with Tropomyosin-4 and Gamma-Actin Decreasing Actin Polymerization. Mol Ther. 2021;29(3):1138-1150.
[44] LAVENNIAH A, LUU TDA, LI YP, et al. Engineered Circular RNA Sponges Act as miRNA Inhibitors to Attenuate Pressure Overload-Induced Cardiac Hypertrophy. Mol Ther. 2020;28(6):1506-1517.
[45] PALMA FR, GANTNER BN, SAKIYAMA MJ, et al. ROS production by mitochondria: function or dysfunction? Oncogene. 2024;43(5): 295-303.
[46] CINATO M, ANDERSSON L, MILJANOVIC A, et al. Role of Perilipins in Oxidative Stress-Implications for Cardiovascular Disease. Antioxidants (Basel). 2024;13(2):209.
[47] XIE Y, GAO Y, GAO R, et al. The proteasome activator REGγ accelerates cardiac hypertrophy by declining PP2Acα-SOD2 pathway. Cell Death Differ. 2020;27(10):2952-2972.
[48] MENDOZA A, PATEL P, ROBICHAUX D, et al. Inhibition of the mPTP and Lipid Peroxidation Is Additively Protective Against I/R Injury. Circ Res. 2024;134(10):1292-1305.
[49] ZHANG QQ, CHEN QS, FENG F, et al. Benzoylaconitine: A promising ACE2-targeted agonist for enhancing cardiac function in heart failure. Free Radic Biol Med. 2024;214:206-218.
[50] YANG X, FU Y, LIU J, et al. A new application of nano-selenium: rescue of CK2 and mitochondria from oxidative stress to prevent cardiac hypertrophy. Nanomedicine (Lond). 2023;18(21):1421-1439.
[51] AN D, ZENG Q, ZHANG P, et al. Alpha-ketoglutarate ameliorates pressure overload-induced chronic cardiac dysfunction in mice. Redox Biol. 2021;46:102088.
|