[1] 丁海波,刘柯良,卫孟萧,等.微结构可控材料的制备及其在生物医学的应用[J].中国科学(化学),2021,51(11):1501-1510.
[2] LI J, ESTEBAN-FERNÁNDEZ DE ÁVILA B, GAO W, et al. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci Robot. 2017;2(4):eaam6431.
[3] 李杨民,汤晖,徐青松,等.面向生物医学应用的微操作机器人技术发展态势[J].机械工程学报,2011,47(23):1-13.
[4] LI M, HU X, ZHAO Y, et al. An overview of recent progress in micro/nanorobots for biomedical applications. Adv Mater Technol. 2023; 8(11):2201928.
[5] 荣烈润.纳米机器人浅谈[J].机电一体化,2007,13(1):6-8.
[6] WANG Q, ZHANG L. External power-driven microrobotic swarm: From fundamental understanding to imaging-guided delivery. ACS Nano. 2021;15(1):149-174.
[7] XIE H, SUN M, FAN X, et al. Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation. Sci Robot. 2019;4(28):eaav8006.
[8] 周可,陈梦梦,付静,等.仿生无约束微纳米机器人在生物医学上的应用[J].生物医学工程学杂志,2021,38(5):1003-1009.
[9] AGRAHARI V, AGRAHARI V, CHOU M-L, et al. Intelligent micro-/nanorobots as drug and cell carrier devices for biomedical therapeutic advancement: Promising development opportunities and translational challenges. Biomaterials. 2020;260:120163.
[10] 金东东,俞江帆,黄天云,等.磁性微纳米尺度游动机器人:现状与应用前景[J].科学通报,2017,62(2):136-151.
[11] KIM J, CHUNG SE, CHOI S-E, et al. Programming magnetic anisotropy in polymeric microactuators. Nat Mater. 2011;10(10):747-752.
[12] HUANG HW, SAKAR MS, PETRUSKA AJ, et al. Soft micromachines with programmable motility and morphology. Nat Commun. 2016;7:12263.
[13] MEDINA-SÁNCHEZ M, SCHWARZ L, MEYER AK, et al. Cellular cargo delivery: Toward assisted fertilization by sperm-carrying micromotors. Nano Lett. 2015;16:555-561.
[14] GO G, HAN J, ZHEN J, et al. A magnetically actuated microscaffold containing mesenchymal stem cells for articular cartilage repair. Adv Healthc Mater. 2017;6(13):1601378.
[15] LI J, LI X, LUO T, et al. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci Robot. 2018;3(19):eaat8829.
[16] YASA IC, TABAK AF, YASA O, et al. 3d-printed microrobotic transporters with recapitulated stem cell niche for programmable and active cell delivery. Adv Funct Mater. 2019;29(17):1808992.
[17] GO G, JEONG SG, YOO A, et al. Human adipose-derived mesenchymal stem cell–based medical microrobot system for knee cartilage regeneration in vivo. Sci Robot. 2020;5:eaay6626.
[18] WANG Q, CHAN KF, SCHWEIZER K, et al. Ultrasound doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci Adv. 2021;7(9):eabe5914.
[19] WANG Y, LIU X, CHEN C, et al. Magnetic nanorobots as maneuverable immunoassay probes for automated and efficient enzyme linked immunosorbent assay. ACS Nano. 2022;16(1):180-191.
[20] LIU J, LI L, CAO C, et al. Swarming multifunctional heater-thermometer nanorobots for precise feedback hyperthermia delivery. ACS Nano. 2023;17(17):16731-16742.
[21] ZHOU H, MAYORGA-MARTINEZ CC, PANE S, et al. Magnetically driven micro and nanorobots. Chem Rev. 2021;121(8):4999-5041.
[22] 李盼,王志超,冯静,等.磁驱动微纳机器人研究进展及关键技术[J].磁性材料及器件,2023,54(6):105-117.
[23] HUANG TY, SAKAR MS, MAO A, et al. 3d printed microtransporters: Compound micromachines for spatiotemporally controlled delivery of therapeutic agents. Adv Mater. 2015;27(42):6644-6650.
[24] TOTTORI S, ZHANG L, QIU F, et al. Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Adv Mater. 2012;24(6):811-816.
[25] YAN X, ZHOU Q, VINCENT M, et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci Robot. 2017; 2(12):eaaq1155.
[26] ZHAO LB, PAN L, ZHANG K, et al. Generation of janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation. Lab Chip. 2009;9(20):2981.
[27] LI B, YANG H, CHENG K, et al. Development of magnetic poly(l-lactic acid) nanofibrous microspheres for transporting and delivering targeted cells. Colloid Surface B. 2023;223:113175.
[28] 王成军,李帅.软体机器人研究现状[J].微纳电子技术,2019,56(12): 948-955.
[29] TANG J, YAO C, GU Z, et al. Super-soft and super-elastic DNA robot with magnetically driven navigational locomotion for cell delivery in confined space. Angew Chem Int Edit. 2020;59(6):2490-2495.
[30] HU W, LUM GZ, MASTRANGELI M, et al. Small-scale soft-bodied robot with multimodal locomotion. Nature. 2018;554(7690):81-85.
[31] YAN X, ZHOU Q, YU J, et al. Magnetite nanostructured porous hollow helical microswimmers for targeted delivery. Adv Funct Mater. 2015; 25(33):5333-5342.
[32] MAGDANZ V, KHALIL ISM, SIMMCHEN J, et al. Ironsperm: Sperm-templated soft magnetic microrobots. Science Adv. 2020;6(28): eaba5855.
[33] PARK BW, ZHUANG J, YASA O, et al. Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano. 2017; 11(9):8910-8923.
[34] LI C, LAU GC, YUAN H, et al. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Sci Robot. 2020;5(49):eabb9822.
[35] FAN Q, LU J, JIA J, et al. 2D magnetic manipulation of a micro-robot in glycerin using six pairs of magnetic coils. Micromachines. 2022; 13(12):2144.
[36] 孙浩然,王林,于世民,等.磁驱微纳机器人用细胞原位培养系统的设计[J].机械工程学报,2022,58(1):1-9.
[37] ZHANG S, ELSAYED M, PENG R, et al. Reconfigurable multi-component micromachines driven by optoelectronic tweezers. Nat Commun. 2021;12(1):5349.
[38] MOU F, LI Y, CHEN C, et al. Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles. Small. 2015;11(21):2564-2570.
[39] ZHOU D, LI YC, XU P, et al. Visible-light controlled catalytic Cu2O-Au micromotors Nanoscale. 2017;9(3):1315.
[40] CAI L, WANG H, YU Y, et al. Stomatocyte structural color-barcode micromotors for multiplex assays. Natl Sci Rev. 2020;7(3):644-651.
[41] WU Z, WU Y, HE W, et al. Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew Chem Int Edit. 2013;52(27):7000-7003.
[42] ZHANG Q, DONG R, WU Y, et al. Light-driven Au-WO3@C janus micromotors for rapid photodegradation of dye pollutants. ACS Appl Mater Interfaces. 2017;9(5):4674-4683.
[43] DAI B, WANG J, XIONG Z, et al. Programmable artificial phototactic microswimmer. Nat Nanotechnol. 2016;11(12):1087-1092.
[44] WANG W, CASTRO LA, HOYOS M, et al. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano. 2012;6(7): 6122-6132.
[45] ZHOU C, ZHAO L, WEI M, et al. Twists and turns of spinning metallic microparticles megahertz ultrasound. ACS Nano. 2017;12(7):7415-7415.
[46] WANG X, CAI J, SUN L, et al. Facile fabrication of magnetic microrobots based on spirulina templates for targeted delivery and synergistic chemo-photothermal therapy. ACS Appl Mater Inter. 2019;11(5): 4745-4756.
[47] WU Z, SI T, GAO W, et al. Superfast near-infrared light-driven polymer multilayer rockets. Small. 2016;12(5):577-582.
[48] SU H, LI S, YANG GZ, et al. Janus micro/nanorobots in biomedical applications. Adv Healthc Mater. 2023;12(16):2202391.
[49] ALAPAN Y, YIGIT B, BEKER O, et al. Shape-encoded dynamic assembly of mobile micromachines. Nat Mater. 2019;18(11):1244-1251.
[50] 张政,谢叻.体内微型手术机器人运动仿真[J].中国数字医学, 2015,10(1):57-60.
[51] SPADA C, SPERA G, RICCIONI M, et al. A novel diagnostic tool for detecting functional patency of the small bowel: The given patency capsule. Endoscopy. 2005;37(9):793-800.
[52] LIEN GS, WU MS, CHEN CN, et al. Feasibility and safety of a novel magnetic-assisted capsule endoscope system in a preliminary examination for upper gastrointestinal tract. Surg Endosc. 2018;32(4): 1937-1944.
[53] JIANG X, QIAN YY, LIU X, et al. Impact of magnetic steering on gastric transit time of a capsule endoscopy (with video). Gastrointest Endosc. 2018;88(4):746-754.
[54] 刘菡萏,王石刚,徐威,等.微纳米生物机器人与药物靶向递送技术[J].机械工程学报,2008,44(11):80-86.
[55] 杨佳,张闯,王晓东,等.微纳机器人的发展综述[J].中国科学(技术科学),2019,49(1):119-120.
[56] 孙猛猛,谢晖.面向靶向医疗的微纳米机器人[J].自然杂志,2020, 42(3):187-200.
[57] NOYHOUZER T, L’HOMME C, BEAULIEU I, et al. Ferrocene-modified phospholipid: An innovative precursor for redox-triggered drug delivery vesicles selective to cancer cells. Langmuir. 2016;32(17):4169-4178.
[58] WANG S, LIU K, WANG F, et al. The application of micro- and nanomotors in classified drug delivery. Chem Asian J. 2019;14(14): 2336-2347.
[59] SUN M, FAN X, MENG X, et al. Magnetic biohybrid micromotors with high maneuverability for efficient drug loading and targeted drug delivery. Nanoscale. 2019;11(39):18382-18392.
[60] FELFOUL O, MOHAMMADI M, TAHERKHANI S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol. 2016;11(11):941-947.
[61] QU M, XIAO W, TIAN J, et al. Fabrication of superparamagnetic nanofibrous poly(l-lactic acid)/γ-Fe2O3 microspheres for cell carriers. J Biomed Mater Res B. 2019;107(3):511-520.
[62] JEON S, KIM S, HA S, et al. Magnetically actuated microrobots as a platform for stem cell transplantation. Sci Robot. 2019;4(30): eaav4317.
[63] TIRGARBAHNAMIRI P, BAGHERI-KHOULENJANI S. Biodegradable microrobots for targeting cell delivery. Med Hypotheses. 2017;102: 56-60.
[64] CHEN XZ, LIU JH, DONG M, et al. Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation. Mater Horiz. 2019;6(7):1512-1516.
[65] ZHANG Y, YAN K, JI F, et al. Enhanced removal of toxic heavy metals using swarming biohybrid adsorbents. Adv Funct Mater. 2018;28(52): 1806340.
[66] 吕毅,张欣.磁外科学:以神奇之力撬动医学科技跨越发展[J].科学通报,2020,65(13):1163-1164. |