[1] POWERS JG, HIGHAM C, BROUSSARD K, et al. Wound healing and treating wounds: Chronic wound care and management. J Am Acad Dermatol. 2016;74(4):607-625; quiz 625-606.
[2] SUN BK, SIPRASHVILI Z, KHAVARI PA. Advances in skin grafting and treatment of cutaneous wounds. Science. 2014;346(6212):941-945.
[3] ZHU Y, CANKOVA Z, IWANASZKO M, et al. Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes. Proc Natl Acad Sci U S A. 2018;115(26):6816-6821.
[4] 甘丽莉,熊娜,刘燕飞.水凝胶药物支架修复皮肤创面:临床应用可能性的挑战[J].中国组织工程研究,2021,25(22):3578-3583.
[5] ZHANG A, LIU Y, QIN D, et al. Research status of self-healing hydrogel for wound management: A review. Int J Biol Macromol. 2020;164:2108-2123.
[6] LIU J, YU H, WANG L, et al. Two-dimensional metal-organic frameworks nanosheets: Synthesis strategies and applications. Inorg Chim Acta. 2018; 483:550-564.
[7] HEMANTH NR, KANDASUBRAMANIAN B. Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting Applications: A review. Chem Eng J. 2020;392:12367801-12367815.
[8] LEI D, LIU N, SU T, et al. Roles of MXene in Pressure Sensing: Preparation, Composite Structure Design, and Mechanism. Adv Mater. 2022;34(52): e2110608.
[9] HALIM J, LUKATSKAYA MR, COOK KM, et al. Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films. Chem Mater. 2014;26(7): 2374-2381.
[10] GHIDIU M, LUKATSKAYA MR, ZHAO MQ, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 2014; 516(7529):78-81.
[11] LIN H, CHEN Y, SHI J. Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Adv Sci (Weinh). 2018;5(10):1800518.
[12] WON JS, PRASAD C, JEONG SG, et al. Recent advances in the development of MXenes/cellulose based composites: A review. Int J Biol Macromol. 2023;240:124477.
[13] GUO J, YU Y, ZHANG D, et al. Morphological Hydrogel Microfibers with MXene Encapsulation for Electronic Skin. Research (Washington, DC). 2021; 2021:7065907.
[14] ZHOU L, ZHENG H, LIU Z, et al. Conductive Antibacterial Hemostatic Multifunctional Scaffolds Based on Ti3C2Tx MXene Nanosheets for Promoting Multidrug-Resistant Bacteria-Infected Wound Healing. ACS Nano. 2021; 15(2):2468-2480.
[15] LI Y, FU R, DUAN Z, et al. Artificial Nonenzymatic Antioxidant MXene Nanosheet-Anchored Injectable Hydrogel as a Mild Photothermal-Controlled Oxygen Release Platform for Diabetic Wound Healing. ACS Nano. 2022;16(5):7486-7502.
[16] JIN L, MA Y, WANG R, et al. Nanofibers and hydrogel hybrid system with synergistic effect of anti-inflammatory and vascularization for wound healing. Mater Today Adv. 2022;14:100224.
[17] KANG X, LI Y, DUAN Z, et al. A Mxene@TA/Fe dual-nanozyme composited antifouling hydrogel for burn wound repair. Chem Eng J. 2023;476: 146420.
[18] LIU D, BI S, WANG H, et al. Polydopamine interface-modulated MXene-based conductive antibacterial hydrogels for on-skin health monitoring and diabetic wound healing. Compos Part A. 2024;180:108065.
[19] SHAHZAD F, ALHABEB M, HATTER CB, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science. 2016; 353(6304):1137-1140.
[20] GUAN K, DONG L, XING Y, et al. Structure and surface modification of MXene for efficient Li/K-ion storage. J Energy Chem. 2022;75:330-339.
[21] GUO B, MA PX. Conducting Polymers for Tissue Engineering. Biomacromolecules. 2018;19(6):1764-1782.
[22] HE J, SHI M, LIANG Y, et al. Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem Eng J. 2020;394:124888.
[23] WAN B, LIU N, ZHANG Z, et al. Water-dispersible and stable polydopamine coated cellulose nanocrystal-MXene composites for high transparent, adhesive and conductive hydrogels. Carbohydr Polym. 2023;314:120929.
[24] ZHAO L, XU H, LIU L, et al. MXene-Induced Flexible, Water-Retention, Semi-Interpenetrating Network Hydrogel for Ultra-Stable Strain Sensors with Real-Time Gesture Recognition. Adv Sci (Weinh). 2023;10(30):e2303922.
[25] HE J, ZOU H, ZHOU J, et al. Thermoresponsive MXene-based hydrogel for controlled anticancer drug release. J Drug Delivery Sci Technol. 2024;91: 105207.
[26] HE L, DI D, CHU X, et al. Photothermal antibacterial materials to promote wound healing. J Control Release. 2023;363:180-200.
[27] LIN H, WANG X, YU L, et al. Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion. Nano Lett. 2017;17(1):384-391.
[28] XUAN J, WANG Z, CHEN Y, et al. Organic‐Base‐Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angew Chem Int Ed Engl. 2016;55(47):14569-14574.
[29] DONG Y, LIU J, CHEN Y, et al. Photothermal and natural activity-based synergistic antibacterial effects of Ti(3)C(2)T(x) MXene-loaded chitosan hydrogel against methicillin-resistant Staphylococcus aureus. Int J Biol Macromol. 2023;240:124482.
[30] 秦苗,CHAIMA M, 苏一蒙,等.MXene及MXene/碳基复合材料在生物医学领域的研究进展[J].新型炭材料(中英文),2023,38(3):496-509.
[31] PARK H, KIM JU, KIM S, et al. Sprayable Ti(3)C(2) MXene hydrogel for wound healing and drug release system. Mater Today Bio. 2023;23:100881.
[32] LIM GP, SOON CF, MA NL, et al. Cytotoxicity of MXene-based nanomaterials for biomedical applications: A mini review. Environ Res. 2021;201:111592.
[33] RAFIEERAD A, SEQUIERA GL, YAN W, et al. Sweet-MXene hydrogel with mixed-dimensional components for biomedical applications. J Mech Behav Biomed Mater. 2020;101:103440.
[34] ZHU H, DAI W, WANG L, et al. Electroactive Oxidized Alginate/Gelatin/MXene (Ti3C2Tx) Composite Hydrogel with Improved Biocompatibility and Self-Healing Property. Polymers. 2022;14(18):3908.
[35] HUANG J, SU J, HOU Z, et al. Cytocompatibility of Ti(3)C(2)T(x) MXene with Red Blood Cells and Human Umbilical Vein Endothelial Cells and the Underlying Mechanisms. Chem Res Toxicol. 2023;36(3):347-359.
[36] WANG T, SUN X, GUO X, et al. Ultraefficiently Calming Cytokine Storm Using Ti3C2Tx MXene. Small Methods. 2021;5(5):2001108.
[37] SZUPLEWSKA A, KULPIŃSKA D, JAKUBCZAK M, et al. The 10th anniversary of MXenes: Challenges and prospects for their surface modification toward future biotechnological applications. Adv Drug Deliv Rev. 2022;182:114099.
[38] SEIDI F, ARABI SHAMSABADI A, DADASHI FIROUZJAEI M, et al. MXenes Antibacterial Properties and Applications: A Review and Perspective. Small. 2023;19(14):2206716.
[39] RASOOL K, HELAL M, ALI A, et al. Antibacterial Activity of Ti3C2Tx MXene. ACS Nano. 2016;10(3):3674-3684.
[40] GE J, LAN M, ZHOU B, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun. 2014;5:4596.
[41] ROZMYSŁOWSKA-WOJCIECHOWSKA A, KARWOWSKA E, GLOC M, et al. Controlling the Porosity and Biocidal Properties of the Chitosan-Hyaluronate Matrix Hydrogel Nanocomposites by the Addition of 2D Ti3C2Tx MXene. Materials. 2020;13(20):4587.
[42] ZHENG H, WANG S, CHENG F, et al. Bioactive anti-inflammatory, antibacterial, conductive multifunctional scaffold based on MXene@CeO2 nanocomposites for infection-impaired skin multimodal therapy. Chem Eng J. 2021;424:130148.
[43] YANG G, LIU F, ZHAO J, et al. MXenes-based nanomaterials for biosensing and biomedicine. Coord Chem Rev. 2023;479:215002.
[44] KUMAR S, LEI Y, ALSHAREEF NH, et al. Biofunctionalized two-dimensional Ti(3)C(2) MXenes for ultrasensitive detection of cancer biomarker. Biosens Bioelectron. 2018;121:243-249.
[45] LI Y, HUANG S, PENG S, et al. Toward Smart Sensing by MXene. Small. 2022; 19(14):2206126.
[46] HU ZC, LU JQ, ZHANG TW, et al. Piezoresistive MXene/Silk fibroin nanocomposite hydrogel for accelerating bone regeneration by Re-establishing electrical microenvironment. Bioact Mater. 2023;22:1-17.
[47] ZHANG YZ, LEE KH, ANJUM DH, et al. MXenes stretch hydrogel sensor performance to new limits. Sci Adv. 2018;4(6):eaat0098.
[48] LI Q, ZHI X, XIA Y, et al. Ultrastretchable High-Conductivity MXene-Based Organohydrogels for Human Health Monitoring and Machine-Learning-Assisted Recognition. ACS Appl Mater. 2023;15(15):19435-19446.
[49] HO DH, CHOI YY, JO SB, et al. Sensing with MXenes: Progress and Prospects. Adv Mater. 2021;33(47):e2005846.
[50] SHAHZAD F, IQBAL A, ZAIDI SA, et al. Nafion-stabilized two-dimensional transition metal carbide (Ti3C2Tx MXene) as a high-performance electrochemical sensor for neurotransmitter. J Ind Eng Chem. 2019;79: 338-344.
[51] SUN Q, ZHANG Y, GAO P, et al. Three-dimensional NiO/Co(3)O(4)@C composite for high-performance non-enzymatic glucose sensor. Anal Sci. 2023;39(1):33-42.
[52] ZHANG J, LI Y, DUAN S, et al. Highly electrically conductive two-dimensional Ti(3)C(2) Mxenes-based 16S rDNA electrochemical sensor for detecting Mycobacterium tuberculosis. Anal Chim Acta. 2020;1123:9-17.
[53] ZHU X, ZHANG Y, LIU M, et al. 2D titanium carbide MXenes as emerging optical biosensing platforms. Biosens Bioelectron. 2021;171:112730.
[54] CUI H, FU X, YANG L, et al. 2D titanium carbide nanosheets based fluorescent aptasensor for sensitive detection of thrombin. Talanta. 2021; 228:122219.
[55] RAMASAMY T, RUTTALA HB, GUPTA B, et al. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J Control Release. 2017;258:226-253.
[56] LU B, ZHU Z, MA B, et al. 2D MXene Nanomaterials for Versatile Biomedical Applications: Current Trends and Future Prospects. Small. 2021;17(46): 2100946.
[57] JIN L, GUO X, GAO D, et al. An NIR photothermal-responsive hybrid hydrogel for enhanced wound healing. Bioact Mater. 2022;16:162-172.
[58] ZHANG P, YANG XJ, LI P, et al. Fabrication of novel MXene (Ti3C2)/polyacrylamide nanocomposite hydrogels with enhanced mechanical and drug release properties. Soft Matter. 2020;16(1):162-169.
[59] ZENG W, CHENG NM, LIANG X, et al. Electrospun polycaprolactone nanofibrous membranes loaded with baicalin for antibacterial wound dressing. Sci Rep. 2022;12(1):10900.
[60] QIN M, JIN J, SAIDING Q, et al. In situ inflammatory-regulated drug-loaded hydrogels for promoting pelvic floor repair. J Control Release. 2020;322: 375-389.
[61] 徐静,吕慧欣,鲍鑫,等.近红外光响应水凝胶在组织工程领域的应用[J].中国组织工程研究,2024,28(3):486-492.
[62] HAO S, HAN H, YANG Z, et al. Recent Advancements on Photothermal Conversion and Antibacterial Applications over MXenes-Based Material. Nanomicro Lett. 2022;14(1):178.
[63] CHEN F, LUO Y, LIU X, et al. 2D Molybdenum Sulfide-Based Materials for Photo-Excited Antibacterial Application. Adv Healthc Mater. 2022;11(13): e2200360.
[64] YANG L, CHEN S, WEI H, et al. Low-Temperature Photothermal Therapy Based on Borneol-Containing Polymer-Modified MXene Nanosheets. ACS Appl Mater. 2022;14(40):45178-45188.
[65] 田煜,张姝婷,邓怡,等.MXene/过氧化物复合材料的制备及抗菌性能研究[J].应用化工,2023,52(6):1619-1625.
[66] LIU C, YANG P, LI J, et al. NIR/pH-responsive chitosan hydrogels containing Ti(3)C(2)/AuNRs with NIR-triggered photothermal effect. Carbohydr Polym. 2022;295:119853.
[67] CHENG F, YI X, DAI J, et al. Photothermal MXene@Zn-MOF-decorated bacterial cellulose-based hydrogel wound dressing for infectious wound healing. Cell Rep Phys Sci. 2023;4(10):101619.
[68] HU Y, ZENG Q, HU Y, et al. MXene/zinc ion embedded agar/sodium alginate hydrogel for rapid and efficient sterilization with photothermal and chemical synergetic therapy. Talanta. 2024;266:125101.
[69] LI Y, HAN M, CAI Y, et al. Muscle-inspired MXene/PVA hydrogel with high toughness and photothermal therapy for promoting bacteria-infected wound healing. Biomater Sci. 2022;10(4):1068-1082.
[70] ZHENG Y, YAN Y, LIN L, et al. Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection. Acta Biomater. 2022;142:113-123. |