中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (16): 3503-3512.doi: 10.12307/2025.415
• 生物材料综述 biomaterial review • 上一篇 下一篇
胡张捷1,张宝贯2,张智武1
收稿日期:
2024-03-05
接受日期:
2024-04-09
出版日期:
2025-06-08
发布日期:
2024-09-06
通讯作者:
张智武,工程博士,执业药师,浙江崇山生物制品有限公司,浙江省杭州市 311100
作者简介:
胡张捷,男,1996年生,浙江省杭州市人,汉族,硕士,研发技术员,主要从事胶原蛋白医疗器械开发与应用的研究。
Hu Zhangjie1, Zhang Baoguan2, Zhang Zhiwu1
Received:
2024-03-05
Accepted:
2024-04-09
Online:
2025-06-08
Published:
2024-09-06
Contact:
Zhang Zhiwu, PhD, Licensed pharmacist, Zhejiang Chumsun Biological Products Co., Ltd., Hangzhou 311100, Zhejiang Province, China
About author:
Hu Zhangjie, Master, Technician, Zhejiang Chumsun Biological Products Co., Ltd., Hangzhou 311100, Zhejiang Province, China
摘要:
文题释义:
固态胶原:通过物理、化学等方法把胶原制备成粉、膜、海绵、凝胶等固态或类固态的物质形态。
医疗器械:是指用于预防、诊断、治疗、监护、缓解疾病或损伤的设备、器具、材料和其他物品,旨在保障人体健康和安全。
背景:胶原蛋白是细胞外基质的主要构成成分,具有稳定的三螺旋结构特性、良好的生物学特性和可加工性,是一种理想的生物医用材料,已被广泛应用于医疗器械领域。
目的:分析固态胶原基材料的主要产品形态、技术特点、制备工艺和临床应用。
方法:应用计算机检索PubMed和中国知网数据库收录的有关固态胶原基材料在医疗器械领域应用的研究,英文检索词为“collagen,collagen sponge,collagen membrane,collagen powder, collagen gel,decellularized extracellular martix,medical device,clinical application”,中文检索词为“胶原,胶原海绵,胶原膜,胶原粉,胶原凝胶,脱细胞基质,医疗器械,临床应用”。根据纳入与排除标准对所有文章进行初筛后,保留质量和相关性较高的92篇文献进行综述。
结果与结论:以动物源来源固态胶原基材料作为医疗器械制备材料,已在原料提取、制备工艺及临床应用等方面取得显著进展,海洋生物胶原和重组胶原增加了胶原来源的可选择性。固态胶原基医疗器械产品类型丰富,制备方法多样,其中交联改性是提升材料性能的重要途径,值得被深入研究。在产品开发思路上,固态胶原基医疗器械产品研究正朝着立体化和仿生化方向发展,与其他生物材料、药物复合的研究也展现出巨大潜力。尽管国内已有不少胶原基医疗器械应用于临床,但在人工皮肤、软骨修复和神经损伤修复等领域的产品开发仍显不足,需在技术和产业化上进一步突破与创新。
https://orcid.org/0009-0009-1678-8334 (胡张捷)
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程
中图分类号:
胡张捷, 张宝贯, 张智武. 固态胶原基材料在医疗器械中的应用[J]. 中国组织工程研究, 2025, 29(16): 3503-3512.
Hu Zhangjie, Zhang Baoguan, Zhang Zhiwu. Application of solid collagen-based materials in medical devices[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(16): 3503-3512.
[1] ZHAO C, XIAO Y, LING S, et al. Structure of Collagen. Methods Mol Biol. 2021;2347:17-25. [2] VAN DER REST M, GARRONE R. Collagen family of proteins. FASEB J. 1991;5(13):2814-2823. [3] 张贵锋,高建萍,徐丽明,等.胶原的百年研究历程回顾与展望[J].生物学杂志,2023,40(1):1-8. [4] FERTALA A, SIERON AL, HOJIMA Y, et al. Self-assembly into fibrils of collagen II by enzymic cleavage of recombinant procollagen II. Lag period, critical concentration, and morphology of fibrils differ from collagen I. J Biol Chem. 1994;269(15):11584-11589. [5] 范代娣,段明瑞,米钰,等.重组E.coli工程菌高密度培养生产人源型胶原蛋白[J].化工学报,2002,53(7):752-754. [6] SHOULDERS MD, RAINES RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929-958. [7] 王璐,但年华,但卫华.Ⅰ型胶原的制备与性能表征[J].生物医学工程与临床,2018,22(1):104-109. [8] 朱必康,罗善超,罗世兴.鱼皮胶原在组织工程中的研究进展与主要应用[J].中国组织工程研究,2021,25(28):4561-45. [9] 赵然,曹敏杰,王晶,等.水产动物源胶原蛋白的提取及应用研究进展[J].食品安全质量检测学报,2020,11(22):8157-8165. [10] 傅容湛,范代娣,杨婉娟,等.重组胶原蛋白的产业发展历程和生物医学应用前景展望[J].生物工程学报,2022,38(9):3228-3242. [11] CHOWDHURY SR, MH BUSRA MF, LOKANATHAN Y, et al. Collagen Type I: A Versatile Biomaterial. Adv Exp Med Biol. 2018;1077:389-414. [12] BELLA J. Collagen structure: new tricks from a very old dog. Biochem J. 2016;473(8):1001-1025. [13] 迟妍妍,乐尧金,刘旭昭,等.胶原蛋白海绵的生物特性及体内降解吸收[J].中国组织工程研究,2014,18(34):5515-5519. [14] 黎洪棉,高建华,鲁峰,等.海绵状Ⅰ型胶原蛋白与兔脂肪干细胞的生物相容性[J].中国组织工程研究与临床康复,2009,13(25):4829-4833. [15] ELANGO J, HOU C, BAO B, et al. The Molecular Interaction of Collagen with Cell Receptors for Biological Function. Polymers (Basel). 2022; 14(5):876. [16] HEINO J. Cellular signaling by collagen-binding integrins. Adv Exp Med Biol. 2014;819:143-155. [17] KOIVUNEN J, TU H, KEMPPAINEN A, et al. Integrin α11β1 is a receptor for collagen XIII. Cell Tissue Res. 2021;383(3):1135-1153. [18] 闫星雨,但年华,陈一宁,等.胶原基复合止血材料的研究进展及展望[J].材料导报,2023,37(5):240-248. [19] FARNDALE RW, SIXMA JJ, BARNES MJ, et al. The role of collagen in thrombosis and hemostasis. J Thromb Haemost. 2004;2(4):561-573. [20] 宋易航,王楚浩,方柏山.胶原酶研究进展与应用[J].化工学报, 2019,70(9):3213-3227. [21] GU L, SHAN T, MA YX, et al. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol. 2019;37(5):464-491. [22] 杜晓丹.胶原类医疗器械产品的免疫原性研究[D].北京:中国药品生物制品检定所,2008. [23] DOILLON CJ, WHYNE CF, BRANDWEIN S, et al. Collagen-based wound dressings: control of the pore structure and morphology. J Biomed Mater Res. 1986;20(8):1219-1228. [24] JIANG X, WANG Y, FAN D, et al. A novel human-like collagen hemostatic sponge with uniform morphology, good biodegradability and biocompatibility. J Biomater Appl. 2017;31(8):1099-1107. [25] DAVIDENKO N, GIBB T, SCHUSTER C, et al. Biomimetic collagen scaffolds with anisotropic pore architecture. Acta Biomater. 2012;8(2):667-676. [26] SUN L, LI B, JIANG D, et al. Nile tilapia skin collagen sponge modified with chemical cross-linkers as a biomedical hemostatic material. Colloids Surf B Biointerfaces. 2017;159:89-96. [27] WANG W, ZHANG Y, YE R, et al. Physical crosslinkings of edible collagen casing. Int J Biol Macromol. 2015;81:920-925. [28] MITRA T, SAILAKSHMI G, GNANAMANI A, et al. Preparation and characterization of a thermostable and biodegradable biopolymers using natural cross-linker. Int J Biol Macromol. 2011;48(2):276-285. [29] ADAMIAK K, SIONKOWSKA A. Current methods of collagen cross-linking: Review. Int J Biol Macromol. 2020;161:550-560. [30] STACHEL I, SCHWARZENBOLZ U, HENLE T, et al. Cross-linking of type I collagen with microbial transglutaminase: identification of cross-linking sites. Biomacromolecules. 2010;11(3):698-705. [31] 陈凯丽.罗非鱼胶原蛋白粉剂的低温制备工艺及促伤口愈合性能研究与评价[D].烟台:烟台大学,2022. [32] WOLF K, SOBRAL P, TELIS V. Physicochemical characterization of collagen fibers and collagen powder for self-composite film production. Food Hydrocolloid. 2009;23(7):1886-1894. [33] YANG L, CHEN K, LIU P, et al. Preparation of Nile tilapia skin collagen powder by low-temperature and comprehensive evaluation of hemostasis and wound healing. Int J Artif Organs. 2023;46(2):99-112. [34] 林海.医用胶原蛋白粉剂及胶原基复合膜的研制与性能表征[D].成都:四川大学,2006. [35] CALCIOLARI E, RAVANETTI F, STRANGE A, et al. Degradation pattern of a porcine collagen membrane in an in vivo model of guided bone regeneration. J Periodontal Res. 2018;53(3):430-439. [36] 顾安琪,周文洁,王跃平.胶原膜在引导骨再生技术中的应用和改良研究进展[J].中国口腔颌面外科杂志,2023,21(6):615-620. [37] 田振华,王颖.氧化羧甲基纤维素钠改性胶原膜的制备及表征[J].皮革科学与工程,2020,30(4):7-12. [38] LEE JE, PARK JC, LEE KH, et al. Laminin modified infection-preventing collagen membrane containing silver sulfadiazine-hyaluronan microparticles. Artif Organs. 2002;26(6):521-528. [39] 周喻,张静怡,吴文惠.生物医药工程材料胶原蛋白静电纺丝制品的应用进展[J].中国生物制品学杂志,2018,31(3):323-327. [40] 韩洪帅,宋秘钊,李家鑫,等.胶原蛋白的提取及其纳米纤维的制备与表征[J].食品工业科技,2023,44(19):182-190. [41] ZHENG J, YANG CY, WANG X. Blow-Spun Collagen Nanofibrous Spongy Membrane: Preparation and Characterization. Tissue Eng Part C Methods. 2022;28(1):3-11. [42] YANG S, SHI X, LI X, et al. Oriented collagen fiber membranes formed through counter-rotating extrusion and their application in tendon regeneration. Biomaterials. 2019;207:61-75. [43] 田振华,何静瑄,王颖.胶原自组装与化学交联制备水凝胶及其性能表征[J].陕西科技大学学报,2021,39(3):1-6+13. [44] SKOPINSKA-WISNIEWSKA J, OLSZEWSKI K, BAJEK A, et al. Dialysis as a method of obtaining neutral collagen gels. Mater Sci Eng C Mater Biol Appl. 2014;40:65-70. [45] XU C, WEI X, SHU F, et al. Induction of fiber-like aggregation and gelation of collagen by ultraviolet irradiation at low temperature. Int J Biol Macromol. 2020;153:232-239. [46] DUAN L, YUAN Q, XIANG H, et al. Fabrication and characterization of a novel collagen-catechol hydrogel. J Biomater Appl. 2018;32(7):862-870. [47] LOTZ C, SCHMID FF, OECHSLE E, et al. Cross-linked Collagen Hydrogel Matrix Resisting Contraction To Facilitate Full-Thickness Skin Equivalents. ACS Appl Mater Interfaces. 2017;9(24):20417-20425. [48] CHAN BP, HUI TY, CHAN OC, et al. Photochemical cross-linking for collagen-based scaffolds: a study on optical properties, mechanical properties, stability, and hematocompatibility. Tissue Eng. 2007;13(1): 73-85. [49] 杨彩仙.Trypsin酶和高渗盐水对真皮脱细胞基质性能影响的实验研究[D].太原:太原理工大学,2021. [50] GIEREK M, ŁABUŚ W, KITALA D, et al. Human Acellular Dermal Matrix in Reconstructive Surgery-A Review. Biomedicines. 2022;10(11):2870. [51] 蒋鸿辉,孔媛媛,刘婧,等.制备脱细胞基质生物墨水在心血管疾病领域中的应用[J].中国组织工程研究,2023,27(30):4904-4911. [52] 何晶,敖强.制备细胞外基质材料组织脱细胞方法的研究与热点[J].中国组织工程研究,2020,24(34):5413-5420. [53] 杨顺,赵明月,涂希玲,等.脱细胞基质复合支架在组织再生中的应用[J].中国组织工程研究,2023,27(30):4856-4861. [54] CHATTOPADHYAY S, RAINES RT. Review collagen-based biomaterials for wound healing. Biopolymers. 2014;101(8):821-833. [55] METZMACHER I, RUTH P, ABEL M, et al. In vitro binding of matrix metalloproteinase-2 (MMP-2), MMP-9, and bacterial collagenase on collagenous wound dressings. Wound Repair Regen. 2007;15(4): 549-555. [56] TAM EM, WU YI, BUTLER GS, et al. Collagen binding properties of the membrane type-1 matrix metalloproteinase (MT1-MMP) hemopexin C domain. The ectodomain of the 44-kDa autocatalytic product of MT1-MMP inhibits cell invasion by disrupting native type I collagen cleavage. J Biol Chem. 2002;277(41):39005-39014. [57] SONG M, LIU Y, HUI L. Preparation and characterization of acellular adipose tissue matrix using a combination of physical and chemical treatments. Mol Med Rep. 2018;17(1):138-146. [58] DOERLER M, EMING S, DISSEMOND J, et al. A novel epidermal growth factor--containing wound dressing for the treatment of hard-to-heal venous leg ulcers. Adv Skin Wound Care. 2014;27(10):456-460. [59] YAO CC, YAO P, WU H, et al. Absorbable collagen sponge combined with recombinant human basic fibroblast growth factor promotes nerve regeneration in rat sciatic nerve. J Mater Sci Mater Med. 2007; 18(10):1969-1972. [60] SUN L, LI L, WANG Y, et al. A collagen-based bi-layered composite dressing for accelerated wound healing. J Tissue Viability. 2022;31(1): 180-189. [61] KIRSNER RS. The use of Apligraf in acute wounds. J Dermatol. 1998; 25(12):805-811. [62] JANSEN LA, DE CAIGNY P, GUAY NA, et al. The evidence base for the acellular dermal matrix AlloDerm: a systematic review. Ann Plast Surg. 2013;70(5):587-594. [63] YANNAS IV, BURKE JF, ORGILL DP, et al. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science. 1982;215(4529):174-176. [64] HEIMBACH DM, WARDEN GD, LUTERMAN A, et al. Multicenter postapproval clinical trial of Integra dermal regeneration template for burn treatment. J Burn Care Rehabil. 2003;24(1):42-48. [65] COLN D, HORTON J, OGDEN ME, et al. Evaluation of hemostatic agents in experimental splenic lacerations. Am J Surg. 1983;145(2):256-259. [66] 王运智.两种鱼皮胶原止血海绵理化性能研究与生物学评价[D].烟台:烟台大学,2019. [67] 何坤,崔含蕊,毛战强,等.胶原蛋白海绵与常见纤维素海绵止血材料的理化性质及凝血效果对比研究[J].中国医学装备,2023, 20(10):201-205. [68] CZIPERLE DJ. Avitene™ Microfibrillar Collagen Hemostat for Adjunctive Hemostasis in Surgical Procedures: A Systematic Literature Review. Med Devices (Auckl). 2021;14:155-163. [69] DELUSTRO F, CONDELL RA, NGUYEN MA, et al. A comparative study of the biologic and immunologic response to medical devices derived from dermal collagen. J Biomed Mater Res. 1986;20(1):109-120. [70] HE Y, WANG J, SI Y, et al. A novel gene recombinant collagen hemostatic sponge with excellent biocompatibility and hemostatic effect. Int J Biol Macromol. 2021;178:296-305. [71] JIN J, JI Z, XU M, et al. Microspheres of Carboxymethyl Chitosan, Sodium Alginate, and Collagen as a Hemostatic Agent in Vivo. ACS Biomater Sci Eng. 2018;4(7):2541-2551. [72] 孔祥宇,王兴,裴志伟,等.生物支架材料及打印技术修复骨缺损[J].中国组织工程研究,2024,28(3):479-485. [73] EL-JAWHARI JJ, SANJURJO-RODRÍGUEZ C, JONES E, et al. Collagen-containing scaffolds enhance attachment and proliferation of non-cultured bone marrow multipotential stromal cells. J Orthop Res. 2016;34(4):597-606. [74] RICO-LLANOS GA, BORREGO-GONZÁLEZ S, MONCAYO-DONOSO M, et al. Collagen Type I Biomaterials as Scaffolds for Bone Tissue Engineering. Polymers (Basel). 2021;13(4):599. [75] ZHANG Z, MA Z, ZHANG Y, et al. Dehydrothermally crosslinked collagen/hydroxyapatite composite for enhanced in vivo bone repair. Colloids Surf B Biointerfaces. 2018;163:394-401. [76] GOVENDER S, CSIMMA C, GENANT HK, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am. 2002;84(12):2123-2134. [77] ERGGELET C, ENDRES M, NEUMANN K, et al. Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res. 2009;27(10):1353-1360. [78] SUN L, XU Y, HAN Y, et al. Collagen-Based Hydrogels for Cartilage Regeneration. Orthop Surg. 2023;15(12):3026-3045. [79] YANG J, TANG Z, LIU Y, et al. Comparison of chondro-inductivity between collagen and hyaluronic acid hydrogel based on chemical/physical microenvironment. Int J Biol Macromol. 2021;182: 1941-1952. [80] SCHNEIDER U, RACKWITZ L, ANDEREYA S, et al. A prospective multicenter study on the outcome of type I collagen hydrogel-based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am J Sports Med. 2011;39(12): 2558-2565. [81] MAZEK J, GNATOWSKI M, SALAS AP, et al. Arthroscopic utilization of ChondroFiller gel for the treatment of hip articular cartilage defects: a cohort study with 12- to 60-month follow-up. J Hip Preserv Surg. 2021;8(1):22-27. [82] KIM MS, KOH IJ, IN Y. Porcine-Derived Collagen-Augmented Chondrogenesis Technique for Treating Knee Cartilage Defects. JBJS Essent Surg Tech. 2021;11(3):e20.00028. [83] FLANIGAN DC, SHERMAN SL, CHILELLI B, et al. Consensus on Rehabilitation Guidelines among Orthopedic Surgeons in the United States following Use of Third-Generation Articular Cartilage Repair (MACI) for Treatment of Knee Cartilage Lesions. Cartilage. 2021; 13(1_suppl):1782S-1790S. [84] PILIPCHUK SP, PLONKA AB, MONJE A, et al. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater. 2015;31(4):317-338. [85] KISHORE DT, BANDIWADEKAR T, PADMA R, et al. Evaluation of relative efficacy of β-tricalcium phosphate with and without type I resorbable collagen membrane in periodontal infrabony defects: a clinical and radiographic study. J Contemp Dent Pract. 2013;14(2):193-201. [86] CAMELO M, NEVINS ML, LYNCH SE, et al. Periodontal regeneration with an autogenous bone-Bio-Oss composite graft and a Bio-Gide membrane. Int J Periodontics Restorative Dent. 2001;21(2):109-119. [87] ALLAN B, RUAN R, LANDAO-BASSONGA E, et al. Collagen Membrane for Guided Bone Regeneration in Dental and Orthopedic Applications. Tissue Eng Part A. 2021;27(5-6):372-381. [88] LI ST, ARCHIBALD SJ, KRARUP C, et al. Peripheral nerve repair with collagen conduits. Clin Mater. 1992;9(3-4):195-200. [89] WANGENSTEEN KJ, KALLIAINEN LK. Collagen tube conduits in peripheral nerve repair: a retrospective analysis. Hand (N Y). 2010;5(3):273-277. [90] MOORE AM, KASUKURTHI R, MAGILL CK, et al. Limitations of conduits in peripheral nerve repairs. Hand (N Y). 2009;4(2):180-186. [91] MATHOT F, RBIA N, THALER R, et al. Introducing human adipose-derived mesenchymal stem cells to Avance® nerve grafts and NeuraGen® nerve guides. J Plast Reconstr Aesthet Surg. 2020;73(8): 1473-1481. [92] MADDURI S, FELDMAN K, TERVOORT T, et al. Collagen nerve conduits releasing the neurotrophic factors GDNF and NGF. J Control Release. 2010;143(2):168-174. |
[1] | 赵 越, 许 燕, 周建平, 张旭婧, 陈宇彤, 靳正阳, 印治涛. 骨组织工程中传统与仿生支架结构设计的差异[J]. 中国组织工程研究, 2025, 29(16): 3458-3468. |
[2] | 冯淑琦, 张诗咏, 姚珂奕, 唐渝菲, 王 锴, 周雪梅, 向 琳 . 光响应纳米材料在骨组织再生中的应用[J]. 中国组织工程研究, 2025, 29(16): 3469-3475. |
[3] | 何 蕊, 李重一, 王瑞瑶, 曾 丹, 范代娣. MXene基水凝胶在创面修复领域的应用[J]. 中国组织工程研究, 2025, 29(16): 3486-3493. |
[4] | 叶 超, 刘晓红. 生物材料异物反应的调控策略[J]. 中国组织工程研究, 2025, 29(16): 3513-3520. |
[5] | 肖文谦, 韩宏娟, 杨淏程, 李 波, 何彬艳. 场驱动医疗微机器人:材料制备工艺不断优化的应用前景[J]. 中国组织工程研究, 2025, 29(10): 2097-2104. |
[6] | 陈家瀚, 奉 超, 黄晓夏, 牛明慧, 王 鑫, 滕 勇. 骨组织工程研究中的二维黑磷材料[J]. 中国组织工程研究, 2025, 29(10): 2124-2131. |
[7] | 刘浩洋, 谢 强, 沈梦然, 任岩松, 马金辉, 王佰亮, 岳德波, 王卫国. 可降解锌基合金在骨缺损修复重建中的应用及研究热点和不足[J]. 中国组织工程研究, 2025, 29(4): 839-845. |
[8] | 陈倚珑, 张 旭, 李 红. 纤维桩联合不同冠部修复方式修复穿髓型非龋性颈部缺损牙体的力学分析[J]. 中国组织工程研究, 2025, 29(4): 866-871. |
[9] | 余 铭, 王 文. 后交叉韧带胫骨附着点撕脱骨折:关节镜治疗中的材料、植入物及内固定技术[J]. 中国组织工程研究, 2025, 29(4): 872-880. |
[10] | 高夕林, 吴 思, 张 超, 朱立国, 符碧峰, 王 平. 椎间盘退变中的力学信号转导蛋白[J]. 中国组织工程研究, 2025, 29(3): 579-589. |
[11] | 赖鹏宇, 梁 冉, 沈 山. 组织工程技术修复颞下颌关节:问题与挑战[J]. 中国组织工程研究, 2025, 29(在线): 1-9. |
[12] | 程玮璐, 王泽华, 张译丹, 刘英慧. 类器官技术在医疗领域的应用和监管挑战[J]. 中国组织工程研究, 2025, 29(1): 202-210. |
[13] | 聂 闻, 黄宏莉, 莫文文, 龙桂月, 廖红兵. 3D打印技术在牙周组织工程中的应用[J]. 中国组织工程研究, 2024, 28(29): 4671-4676. |
[14] | 董 博, 李效宇, 李碧榕, 李 珍, 王子璇, 尹昭懿, 孟维艳. 3D打印支架修复感染性骨缺损[J]. 中国组织工程研究, 2024, 28(29): 4685-4690. |
[15] | 刘 杨, 曹友辉, 包雪梅. 聚醚醚酮及其复合材料修复桩核冠:问题与临床应用价值[J]. 中国组织工程研究, 2024, 28(29): 4691-4696. |
1.1.8 检索文献量 初检文献2 481篇。
1.2 入选标准
1.2.1 纳入标准 ①有关胶原结构、生物学特性研究的文献;②有关胶原医疗器械研究的文献;③优先选择近5年发表的同一领域主题中心相近、论据可靠的文献。
1.2.2 排除标准 ①与研究目的无相关性的文献;②重复性研究文献;③论点论据不明确文献;④陈旧文献。
1.3 数据提取及文献质量评估 检索获得文献2 481篇,其中英文文献1 912篇,中文文献569篇,排除重复文献及与文献相关性低的文献,结合手工检索及远期经典文献,最终纳入92篇文献进行综述分析,包括中文文献25篇、英文文献67篇,见图2。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||