[1] YANG Y, RAO C, YIN T, et al. Application and underlying mechanism of acupuncture for the nerve repair after peripheral nerve injury: Remodeling of nerve system. Front Cell Neurosci. 2023;17:1253438.
[2] WAN T, ZHANG FS, QIN MY, et al. Growth factors: Bioactive macromolecular drugs for peripheral nerve injury treatment - molecular mechanisms and delivery platforms. Biomed Pharmacother. 2024;170: 116024.
[3] ZHOU W, RAHMAN MSU, SUN C, et al. Perspectives on the novel multifunctional nerve guidance conduits: From specific regenerative procedures to motor function rebuilding. Adv Mater. 2024;36(14): e2307805.
[4] REN J, TANG X, WANG T, et al. A dual-modal magnetic resonance/photoacoustic imaging tracer for long-term high-precision tracking and facilitating repair of peripheral nerve injuries. Adv Healthc Mater. 2022;11(13):e2200183.
[5] BEHTAJ S, EKBERG JAK, ST JOHN JA. Advances in electrospun nerve guidance conduits for engineering neural regeneration. Pharmaceutics. 2022;14(2):219.
[6] BITTNER GD, BUSHMAN JS, GHERGHEREHCHI CL, et al. Typical and atypical properties of peripheral nerve allografts enable novel strategies to repair segmental-loss injuries. J Neuroinflammation. 2022;19(1):60.
[7] MANKAVI F, IBRAHIM R, WANG H. Advances in biomimetic nerve guidance conduits for peripheral nerve regeneration. Nanomaterials (Basel). 2023;13(18):2528.
[8] SUN J, CAO W, PAN S, et al. Porous organic materials in tissue engineering: Recent advances and applications for severed facial nerve injury repair. Molecules. 2024;29(3):566.
[9] 曹银利,傅锴锴,陈文,等.可生物降解的聚氨酯体内应用进展[J].华中科技大学学报(医学版),2023,52(1):111-116.
[10] JIA B, HUANG H, DONG Z, et al. Degradable biomedical elastomers: Paving the future of tissue repair and regenerative medicine. Chem Soc Rev. 2024;53(8):4086-4153.
[11] PEDERSEN DD, KIM S, WAGNER WR. Biodegradable polyurethane scaffolds in regenerative medicine: Clinical translation review. J Biomed Mater Res A. 2022;110(8):1460-1487.
[12] GU D, XIA Y, DING Z, et al. Inflammation in the peripheral nervous system after injury. Biomedicines. 2024;12(6):1256.
[13] MIN Q, PARKINSON DB, DUN XP. Migrating schwann cells direct axon regeneration within the peripheral nerve bridge. Glia. 2021;69(2): 235-254.
[14] QIAN Y, LIN H, YAN Z, et al. Functional nanomaterials in peripheral nerve regeneration: Scaffold design, chemical principles and microenvironmental remodeling. Mater Today. 2021;51:165-187.
[15] ZHANG CY, FU CP, LI XY, et al. Three-dimensional bioprinting of decellularized extracellular matrix-based bioinks for tissue engineering. Molecules. 2022;27(11):3442.
[16] BROWN M, LI J, MORAES C, et al. Decellularized extracellular matrix: New promising and challenging biomaterials for regenerative medicine. Biomaterials. 2022;289:121786.
[17] WANG Y, LIN J, CHEN J, et al. Biodegradable polyurethane-incorporating decellularized spinal cord matrix scaffolds enhance schwann cell reprogramming to promote peripheral nerve repair. J Mater Chem B. 2023;11(10):2115-2128.
[18] CHEN YW, CHEN CC, NG HY, et al. Additive manufacturing of nerve decellularized extracellular matrix-contained polyurethane conduits for peripheral nerve regeneration. Polymers. 2019;11(10):1612.
[19] MORELLI S, PISCIONERI A, MESSINA A, et al. Neuronal growth and differentiation on biodegradable membranes. J Tissue Eng Regen Med. 2015;9(2):106-117.
[20] MAULIDA HN, QULUB F, ROSDIANI AF, et al. Hollowfiber polyurethane-collagen coating chitosan as nerve graft for therapy of peripheral nerve injury in extreme paralysis. J Biomim Biomater Biomed Eng. 2016;28:78-84.
[21] XU W, ZHANG Z, LU H, et al. Biocompatible polyurethane conduit grafted with vascular endothelial growth factor-loaded hydrogel repairs the peripheral nerve defect in rats. Macromol Biosci. 2022; 22(3):e2100397.
[22] NASAB ST, ROODBARI NH, GOODARZI V, et al. Nanobioglass enhanced polyurethane/collagen conduit in sciatic nerve regeneration. J Biomed Mater Res B Appl Biomater. 2022;110(5):1093-1102.
[23] WANG Y, LI D, WANG G, et al. The effect of co-transplantation of nerve fibroblasts and schwann cells on peripheral nerve repair. Int J Biol Sci. 2017;13(12):1507-1519.
[24] CHEN ZX, LU HB, JIN XL, et al. Skeletal muscle-derived cells repair peripheral nerve defects in mice. Neural Regen Res. 2020;15(1): 152-161.
[25] FILIPPI M, GARELLO F, YASA O, et al. Engineered magnetic nanocomposites to modulate cellular function. Small. 2022;18(9): e2104079.
[26] DENG P, CHEN F, ZHANG H, et al. Multifunctional double-layer composite hydrogel conduit based on chitosan for peripheral nerve repairing. Adv Healthc Mater. 2022;11(13):e2200115.
[27] NIU Y, CHEN KC, HE T, et al. Scaffolds from block polyurethanes based on poly(ɛ-caprolactone) (pcl) and poly(ethylene glycol) (peg) for peripheral nerve regeneration. Biomaterials. 2014;35(14):4266-4277.
[28] HSU SH, CHANG WC, YEN CT. Novel flexible nerve conduits made of water-based biodegradable polyurethane for peripheral nerve regeneration. J Biomed Mater Res A. 2017;105(5):1383-1392.
[29] LIN W, LAN W, WU Y, et al. Aligned 3d porous polyurethane scaffolds for biological anisotropic tissue regeneration. Regen Biomater. 2020; 7(1):19-27.
[30] TRAN RT, CHOY WM, CAO H, et al. Fabrication and characterization of biomimetic multichanneled crosslinked-urethane-doped polyester tissue engineered nerve guides. J Biomed Mater Res A. 2014;102(8): 2793-2804.
[31] DONG X, LIU S, YANG Y, et al. Aligned microfiber-induced macrophage polarization to guide schwann-cell-enabled peripheral nerve regeneration. Biomaterials. 2021;272:120767.
[32] SALA MR, SKALLI O, LEVENTIS N, et al. Nerve response to superelastic shape memory polyurethane aerogels. Polymers (Basel). 2020; 12(12):2995.
[33] NIU Y, GALLUZZI M. A biodegradable block polyurethane nerve-guidance scaffold enhancing rapid vascularization and promoting reconstruction of transected sciatic nerve in sprague-dawley rats. J Mater Chem B. 2020;8(48):11063-11073.
[34] WANG Y, LIANG R, LIN J, et al. Biodegradable polyurethane nerve guide conduits with different moduli influence axon regeneration in transected peripheral nerve injury. J Mater Chem B. 2021;9(38): 7979-7990.
[35] ZHOU K, WEI W, YANG D, et al. Dual electrical stimulation at spinal-muscular interface reconstructs spinal sensorimotor circuits after spinal cord injury.Nat Commun. 2024;15(1):619.
[36] LI L, LI D, WANG Y, et al. Implantable zinc-oxygen battery for in situ electrical stimulation-promoted neural regeneration. Adv Mater. 2023;35(32):e2302997.
[37] WU Y, WANG L, GUO B, et al. Electroactive biodegradable polyurethane significantly enhanced schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. Biomaterials. 2016;87:18-31.
[38] SHAHROUSVAND M, HOSEINIAN MS, GHOLLASI M, et al. Flexible magnetic polyurethane/Fe2O3 nanoparticles as organic-inorganic nanocomposites for biomedical applications: Properties and cell behavior. Mater Sci Eng C Mater Biol Appl. 2017;74:556-567.
[39] HOSEINIAN MS, POORMOGHADAM D, KHEIROLLAHZADEH F, et al.
Improved neural differentiation of human-induced pluripotent stem cell(hipscs) on a novel polyurethane-based scaffold containing iron oxide nanoparticles (Fe2O3 nps). Curr Stem Cell Res Ther. 2022;18(7): 993-1000.
[40] LEE TH, YEN CT, HSU SH. Preparation of polyurethane-graphene nanocomposite and evaluation of neurovascular regeneration. ACS Biomater Sci Eng. 2020;6(1):597-609.
[41] ZHANG Q, CHEN J, FENG Y, et al. Electroactive scaffolds of biodegradable polyurethane/polydopamine-functionalized graphene oxide regulating the inflammatory response and revitalizing the axonal growth cone for peripheral nerve regeneration. J Mater Chem B. 2023;11(27):6308-6318.
[42] RIOS MU, BUCKSOT JE, RAHEBI KC, et al. Protocol for construction of rat nerve stimulation cuff electrodes. Methods Protoc. 2019;2(1):19.
[43] HUANG Z, GUO Z, SUN M, et al. A study on graphene composites for peripheral nerve injury repair under electrical stimulation. RSC Adv. 2019;9(49):28627-28635.
[44] CHOI YS, HSUEH YY, KOO J, et al. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat Commun. 2020;11(1):5990.
[45] SALEHI M, NASERI-NOSAR M, EBRAHIMI-BAROUGH S, et al. Polyurethane/gelatin nanofibrils neural guidance conduit containing platelet-rich plasma and melatonin for transplantation of schwann cells. Cell Mol Neurobiol. 2018;38(3):703-713.
[46] CHEN SH, CHOU PY, CHEN ZY, et al. An electrospun nerve wrap comprising bletilla striata polysaccharide with dual function for nerve regeneration and scar prevention. Carbohydr Polym. 2020;250:116981.
[47] CHEN Y, LONG X, LIN W, et al. Bioactive 3d porous cobalt-doped alginate/waterborne polyurethane scaffolds with a coral reef-like rough surface for nerve tissue engineering application. J Mater Chem B. 2021;9(2):322-335.
[48] YANG H, LI Q, LI L, et al. Gastrodin modified polyurethane conduit promotes nerve repair via optimizing schwann cells function. Bioact Mater. 2022;8:355-367.
[49] SINGH A, SHIEKH PA, QAYOOM I, et al. Evaluation of polymeric aligned ngcs and exosomes in nerve injury models in diabetic peripheral neuropathy condition. Eur polym J. 2021;146:110256.
[50] SINGH A, SHIEKH PA, DAS M, et al. Aligned chitosan-gelatin cryogel-filled polyurethane nerve guidance channel for neural tissue engineering: Fabrication, characterization, and in vitro evaluation. Biomacromolecules. 2019;20(2):662-673.
[51] KIM JI, HWANG TI, AGUILAR LE, et al. A controlled design of aligned and random nanofibers for 3d bi-functionalized nerve conduits fabricated via a novel electrospinning set-up. Sci Rep. 2016;6:23761.
[52] VINZONS LU, DONG GC, LIN SP. Hierarchically patterned polyurethane microgrooves featuring nanopillars or nanoholes for neurite elongation and alignment. Beilstein J Nanotechnol. 2023;14:1157-1168.
[53] THAMPI S, THEKKUVEETTIL A, MUTHUVIJAYAN V, et al. Accelerated outgrowth of neurites on graphene oxide-based hybrid electrospun fibro-porous polymeric substrates. ACS Appl Bio Mater. 2020;3(4): 2160-2169.
[54] KAI D, TAN MJ, PRABHAKARAN MP, et al. Biocompatible electrically conductive nanofibers from inorganic-organic shape memory polymers. Colloids Surf B Biointerfaces. 2016;148:557-565.
[55] NABIPOUR M, MELLATI A, ABASI M, et al. Preparation of bilayer tissue-engineered polyurethane/poly-l-lactic acid nerve conduits and their in vitro characterization for use in peripheral nerve regeneration. J Biol Eng. 2024;18(1):16.
[56] WU Y, WANG L, HU T, et al. Conductive micropatterned polyurethane films as tissue engineering scaffolds for schwann cells and pc12 cells. J Colloid Interface Sci. 2018;518:252-262.
[57] ZHAO Y, LIANG Y, DING S, et al. Application of conductive ppy/sf composite scaffold and electrical stimulation for neural tissue engineering . Biomaterials. 2020;255:120164.
[58] SUN Y, ZHANG Y, GUO Y, et al. Electrical aligned polyurethane nerve guidance conduit modulates macrophage polarization and facilitates immunoregulatory peripheral nerve regeneration. J Nanobiotechnology. 2024;22(1):244.
[59] SHRESTHA S, SHRESTHA BK, LEE J, et al. A conducting neural interface of polyurethane/silk-functionalized multiwall carbon nanotubes with enhanced mechanical strength for neuroregeneration. Mater Sci Eng C Mater Biol Appl. 2019;102:511-523.
[60] DEMIR US, SHAHBAZI R, CALAMAK S, et al. Gold nano-decorated aligned polyurethane nanofibers for enhancement of neurite outgrowth and elongation. J Biomed Mater Res A. 2018;106(6):1604-1613.
[61] SHAN Y, XU L, CUI X, et al. A responsive cascade drug delivery scaffold adapted to the therapeutic time window for peripheral nerve injury repair. Mater Horiz. 2024;11(4):1032-1045.
|