中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (16): 3458-3468.doi: 10.12307/2025.421

• 生物材料综述 biomaterial review • 上一篇    下一篇

骨组织工程中传统与仿生支架结构设计的差异

赵  越,许  燕,周建平,张旭婧,陈宇彤,靳正阳,印治涛   

  1. 新疆大学机械工程学院,新疆维吾尔自治区乌鲁木齐市   830047
  • 收稿日期:2024-03-13 接受日期:2024-04-19 出版日期:2025-06-08 发布日期:2024-09-05
  • 通讯作者: 许燕,教授,博士生导师,新疆大学机械工程学院,新疆维吾尔自治区乌鲁木齐市 830047
  • 作者简介:赵越,女,2000年生,山西省大同市人,汉族,在读硕士,主要从事骨组织工程、骨支架的制备与性能研究。
  • 基金资助:
    国家自然科学基金项目(52365053),课题名称:载三联药装配式骨支架制备及多激励源控释特性研究,项目负责人:许燕 

Differences in structural design between traditional and bionic scaffolds in bone tissue engineering

Zhao Yue, Xu Yan, Zhou Jianping, Zhang Xujing, Chen Yutong, Jin Zhengyang, Yin Zhitao   

  1. School of Mechanical Engineering, Xinjiang University, Urumqi 830047, Xinjiang Uygur Autonomous Region, China
  • Received:2024-03-13 Accepted:2024-04-19 Online:2025-06-08 Published:2024-09-05
  • Contact: Xu Yan, Professor, Doctoral supervisor, School of Mechanical Engineering, Xinjiang University, Urumqi 830047, Xinjiang Uygur Autonomous Region, China
  • About author:Zhao Yue, Master candidate, School of Mechanical Engineering, Xinjiang University, Urumqi 830047, Xinjiang Uygur Autonomous Region, China
  • Supported by:
    National Natural Science Foundation of China, No. 52365053 (to XY)

摘要:

文题释义:
骨组织工程:是一门融合了生物学、工程学和材料科学等诸多领域的综合性学科,以“开发出与人体自然骨组织结合的功能性支架”为主要研究目标,以解决植入物无法与宿主骨融合的问题,从而达到骨缺损修复的目的。其中,支架材料、种子细胞及细胞因子是骨组织工程中的三大关键要素。
仿生支架:一种模仿天然组织复杂结构和微观生理环境及功能的多孔支架,或者用于模仿自然界生物系统某些特征的支架。这种多孔结构的支架有利于营养物质的流通与成骨细胞的长入,同时也可促进血管内皮细胞附着和增殖,以支持新生血管的形成和长入,在满足人体机械性能的同时又具备良好的生物活性和可降解性。

背景:多孔支架作为新骨生长的临时基质在骨修复过程中起着关键作用,其中多孔支架的结构设计是骨修复过程中的研究重点。
目的:综述传统支架(规则、均匀的支架)和仿生支架(不规则、不均匀的支架)在骨组织工程研究领域的应用。
方法:检索中国知网(CNKI)、维普、万方、Web of Science、Science Direct、PubMed、EI等数据库,选取2008年1月至2024年3月发表的文献,中文检索词为“骨组织工程,仿生支架,骨小梁,传统支架,骨修复,三周期极小曲面”,英文检索词为“bone tissue engineering,bionic scaffolds,bone trabeculae,traditional scaffolds, bone repair,TPMS”。最终纳入81篇文献进行综述。
结果与结论:骨支架的结构设计是实现骨修复和骨再生的关键,骨组织工程中的支架技术已取得显著进展。传统的规则多孔支架因简单的制造流程和良好的机械性能被广泛应用,然而这类支架往往缺乏生物活性,难以模拟自然骨组织的复杂微环境,限制了其在促进细胞增殖和骨再生方面的能力。相反,仿生支架通过模拟自然骨组织的结构特征,提供了更适宜的生理微环境,促进了成骨细胞的增殖、分化及新骨的形成,为骨缺损有效治疗提供了新的思路。尽管仿生支架在理论上具有巨大的潜力,但在实际应用中仍面临诸多挑战,支架的生物相容性、生物活性及长期稳定性等因素仍需通过临床试验进行进一步验证。
https://orcid.org/0009-0003-9720-253X (赵越) 

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程

关键词: 骨组织工程, 仿生支架, 骨小梁, 传统支架, 骨修复, 三周期极小曲面, 拓扑优化, 结构设计, 单胞阵列

Abstract: BACKGROUND: As a temporary matrix for new bone growth, the porous scaffold plays a key role in the process of bone repair. The structural design of porous scaffolds is a research priority in the process of bone repair.
OBJECTIVE: To summarize traditional bone scaffolds (regular, uniform scaffolds) and bionic scaffolds (irregular, inhomogeneous scaffolds) in the field of bone tissue engineering research. 
METHODS: A computerized search was performed in the databases of CNKI, VIP, WanFang, Web of Science, Science Direct, PubMed, and EI. Literature published from January 2008 to March 2024 was selected. The search terms in Chinese included “bone tissue engineering, bionic scaffolds, bone trabeculae, traditional scaffolds, bone repair, triple-period minimal surfaces.” The search terms in English were “bone tissue engineering, bionic scaffolds, bone trabeculae, traditional scaffolds, bone repair, TPMS.” Finally, 81 articles were included for review. 
RESULTS AND CONCLUSION: The structural design of bone scaffolds is the key to achieve bone repair and bone regeneration, and scaffold technology in bone tissue engineering has made remarkable progress. Traditional regular porous scaffolds are widely used due to their simple manufacturing process and good mechanical properties. However, these scaffolds often lack biological activity and are difficult to mimic the complex microenvironment of natural bone tissue, limiting their ability to promote cell proliferation and bone regeneration. On the contrary, bionic scaffolds provide a more suitable physiological microenvironment by mimicking the structural features of natural bone tissues, which promotes the proliferation and differentiation of osteoblasts, as well as the formation of new bone, and provides a new way of thinking for the effective treatment of bone defects. Despite the great potential of bionic scaffolds in theory, they still face many challenges in practical applications. Factors such as the scaffold’s biocompatibility, bioactivity, and its long-term stability still need to be further verified through clinical trials. 

Key words: bone tissue engineering, bionic scaffold, bone trabeculae, traditional scaffold, bone repair, triple-period minimal surface, topology optimization, structural design, single-cell array

中图分类号: