[1] RAVOOR J, SR E. A study on retention of MWCNT in robocasted MWCNT-HAP scaffold structures using vacuum sintering technique and their characteristics. Ceramics Int. 2022;48(21):31289-31298.
[2] 熊伟,袁灵梅,钱国文,等.“补肾壮骨”中药应用于骨组织工程支架修复节段性骨缺损[J].中国组织工程研究,2023,27(21): 3438-3444.
[3] 董心雨,董馨月,王婉婷,等.中药有效成分结合支架材料促进骨组织再生[J].中国组织工程研究,2024,28(20):3240-3245.
[4] 王攀红,王倩,任杰.浅议方剂配伍理论[J].四川中医,2018,36(7): 57-58.
[5] 袁冰.中医方剂配伍理论的历史研究[D].北京:中国中医科学院, 2009.
[6] SUNG HW, HUANG RN, HUANG LL, et al. Feasibility study of a natural crosslinking reagent for biological tissue fixation. J Biomed Mater Res. 1998;42(4):560-567.
[7] LIN FH, DONG GC, CHEN KS, et al. Immobilization of Chinese herbal medicine onto the surface-modified calcium hydrogenphosphate. Biomaterials. 2003;24(13):2413-2422.
[8] ZOU Q, LI Y, ZHANG L, et al. Antibiotic delivery system using nano-hydroxyapatite/chitosan bone cement consisting of berberine. J Biomed Mater Res A. 2009;89(4):1108-1117.
[9] ZHAO J, OHBA S, KOMIYAMA Y, et al. Icariin: a potential osteoinductive compound for bone tissue engineering. Tissue Eng Part A. 2010;16(1): 233-243.
[10] FAN J, BI L, WU T, et al. A combined chitosan/nano-size hydroxyapatite system for the controlled release of icariin. J Mater Sci Mater Med. 2012;23(2):399-407.
[11] CORDOBA A, MANZANARO-MORENO N, COLOM C, et al. Quercitrin nanocoated implant surfaces reduce osteoclast activity in vitro and in vivo. Int J Mol Sci. 2018;19(11):3319.
[12] LI CH, WANG JW, HO MH, et al. Immobilization of naringin onto chitosan substrates by using ozone activation. Colloids Surf B Biointerfaces. 2014;115:1-7.
[13] SHI G, YANG C, WANG Q, et al. Traditional Chinese medicine compound-loaded materials in bone regeneration. Front Bioeng Biotechnol. 2022;10:851561.
[14] 杨为中,周大利,尹光福,等.骨组织工程支架材料磷酸钙双相生物陶瓷的研究进展[J].硅酸盐学报,2004,32(9):1143-1149.
[15] 程志琳,秦豪,许林.治疗骨缺损的组织工程支架研究进展[J].微创医学,2022,17(6):780-783.
[16] ZHANG C, YUAN Y, ZENG Y, et al. DLP 3D printed silica-doped HAp ceramic scaffolds inspired by the trabecular bone structure. Ceramics Int. 2022;48(19 Pt1):27765-27773.
[17] YIN C, ZHANG T, WEI Q, et al. Surface treatment of 3D printed porous Ti6Al4V implants by ultraviolet photofunctionalization for improved osseointegration. Bioact Mater. 2022;7:26-38.
[18] 管明强,朱志霞,周观明.淫羊藿苷对聚乳酸/纳米羟基磷灰石支架上成骨细胞增殖与分化的影响[J].包头医学院学报,2018,34(1): 92-94.
[19] 杨湘俊,陈俊宇,朱舟,等.PCL基复合骨组织工程支架研究现状及发展[J].中国生物医学工程学报,2021,40(4):485-492.
[20] BROVOLD M, ALMEIDA J I, PLA-PALACIN I, et al. Naturally-derived biomaterials for tissue engineering applications. Adv Exp Med Biol. 2018;1077:421-449.
[21] 潘依雯,倪昕晔,王车礼.羟基磷灰石作为药物载体在骨修复领域的研究进展[J].药品评价,2022,19(17):1079-1083.
[22] 李忠杰,李绍波.磷酸钙人工骨修复骨缺损的研究进展[J].生物骨科材料与临床研究,2021,18(4):87-91.
[23] JIA G, HUANG H, NIU J, et al. Exploring the interconnectivity of biomimetic hierarchical porous Mg scaffolds for bone tissue engineering: effects of pore size distribution on mechanical properties,degradation behavior and cell migration ability. Journal of Magnesium and Alloys. 2021;9(6):1993-2004.
[24] WEI B, WANG W, LIU X, et al. Gelatin methacrylate hydrogel scaffold carrying resveratrol-loaded solid lipid nanoparticles for enhancement of osteogenic differentiation of BMSCs and effective bone regeneration. Regen Biomater. 2021;8(5):rbab44.
[25] 于玛丽,李丽梅,郭家智,等.壳聚糖在组织工程的应用[J].中国高新科技,2019(3):103-105.
[26] 周先进,张延芳.淫羊藿苷对成骨细胞中β-catenin、ALP和RUNX2表达的影响[J].中国医药导报,2017,14(36):57-59.
[27] 陈花英,周娟,吴焕成,等.淫羊藿苷对高糖环境下骨髓间充质干细胞凋亡及成骨分化的影响[J].兰州大学学报(医学版),2019, 45(4):37-42.
[28] 招文华,沈耿杨,任辉,等.骨碎补活性单体成分调控骨质疏松症相关信号通路的研究进展[J].中国骨质疏松杂志,2017,23(1):122-129.
[29] 孙丙银.骨碎补总黄酮促进股骨缺损牵张成骨新骨形成的实验研究[D].广州:广州中医药大学,2013.
[30] 张波,胡凌云,苟林,等.槲皮素对人骨髓间充质干细胞增殖和成骨分化的影响及分子机制[J].中国骨质疏松杂志,2022,28(12):1765-1769.
[31] XU Z, SUN Y, DAI H, et al. Engineered 3D-printed polyvinyl alcohol scaffolds incorporating beta-tricalcium phosphate and icariin induce bone regeneration in rat skull defect model. Molecules. 2022;27(14): 4535.
[32] GUI ZP, HU Y, ZHOU YN, et al. Effect of quercetin on chondrocyte phenotype and extracellular matrix expression. Chin J Nat Med. 2020; 18(12):922-933.
[33] 王海英, 张宇琪, 孙昊天,等.姜黄素及其衍生物的作用及机制[J].生理科学进展,2022,53(4):271-275.
[34] ZHANG R, ZHANG Q, ZOU Z, et al. Curcumin supplementation enhances bone marrow mesenchymal stem cells to promote the anabolism of articular chondrocytes and cartilage repair. Cell Transplant. 2021; 30:2139986480.
[35] 柳毅,陈建治.三七总皂苷及其诱导成骨的试验和机制[J].国际口腔医学杂志,2015,42(1):75-78.
[36] HU JP, NISHISHITA K, SAKAI E, et al. Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-kappaB and Akt pathways. Eur J Pharmacol. 2008;580(1-2):70-79.
[37] CUI Y, XIE J, CAI L, et al. Berberine regulates bone metabolism in apical periodontitis by remodelling the extracellular matrix. Oral Dis. 2023;29(3):1184-1196.
[38] WONG SK, CHIN KY, IMA-NIRWANA S. The osteoprotective effects of kaempferol: the evidence from in vivo and in vitro studies. Drug Des Devel Ther. 2019;13:3497-3514.
[39] VIMALRAJ S, SARAVANAN S, HARIPRABU G, et al. Kaempferol-zinc (II) complex synthesis and evaluation of bone formation using zebrafish model. Life Sci. 2020;256:117993.
[40] GUO AJ, CHOI RC, ZHENG KY, et al. Kaempferol as a flavonoid induces osteoblastic differentiation via estrogen receptor signaling. Chin Med. 2012;7:10.
[41] WANG CC, WANG CH, CHEN HC, et al. Combination of resveratrol-containing collagen with adipose stem cells for craniofacial tissue-engineering applications. Int Wound J. 2018;15(4):660-672.
[42] HAN X, SHEN J, CHEN S, et al. Ultrasonic-controlled “explosive” hydrogels to precisely regulate spatiotemporal osteoimmune disturbance. Biomaterials. 2023;295:122057.
[43] LONG Z, XIANG W, LI J, et al. Exploring the mechanism of resveratrol in reducing the soft tissue damage of osteoarthritis based on network pharmacology and experimental pharmacology. Evid Based Complement Alternat Med. 2021;2021:9931957.
[44] RAMESH P, JAGADEESAN R, SEKARAN S, et al. Flavonoids: classification, function, and molecular mechanisms involved in bone remodelling. Front Endocrinol (Lausanne). 2021;12:779638.
[45] BUDIRAHARJO R, NEOH KG, KANG ET. Hydroxyapatite-coated carboxymethyl chitosan scaffolds for promoting osteoblast and stem cell differentiation. J Colloid Interface Sci. 2012;366(1):224-232.
[46] 宁钰,秦文,任亚辉,等.载淫羊藿苷/凹凸棒石/Ⅰ型胶原/聚己内酯复合支架修复兔胫骨缺损的实验研究[J].中国修复重建外科杂志,2019,33(9):1181-1189.
[47] OPRITA EI, IOSAGEANU A, CRACIUNESCU O. Progress in composite hydrogels and scaffolds enriched with icariin for osteochondral defect healing. Gels. 2022;8(10):648.
[48] CHEN CY, SHIE MY, LEE AK, et al. 3D-printed ginsenoside rb1-loaded mesoporous calcium silicate/calcium sulfate scaffolds for inflammation inhibition and bone regeneration. Biomedicines. 2021;9(8):907.
[49] MADANI P, HESARAKI S, SAEEDIFAR M, et al. The controlled release, bioactivity and osteogenic gene expression of Quercetin-loaded gelatin/tragacanth/nano-hydroxyapatite bone tissue engineering scaffold. J Biomater Sci Polym Ed. 2023;34(2):217-242.
[50] SHRESTHA R, THENISSERY A, KHUPSE R, et al. Strategies for the preparation of chitosan derivatives for antimicrobial, drug delivery, and agricultural applications: a review. Molecules. 2023;28(22):7659.
[51] MILANI G, CAVALLUZZI MM, SOLIDORO R, et al. Molecular simplification of natural products: synthesis, antibacterial activity, and molecular docking studies of berberine open models. Biomedicines. 2021;9(5):452.
[52] RASHKI S, ASGARPOUR K, TARRAHIMOFRAD H, et al. Chitosan-based nanoparticles against bacterial infections. Carbohydr Polym. 2021;251: 117108.
[53] 汪芳,陈云平,苏香萍.抗菌止血壳聚糖/黄连素多孔干凝胶的制备及其表征[J].中国组织工程研究,2017,21(6):899-905.
[54] JI C, ZHANG C, XU Z, et al. Mussel-inspired HA@TA-CS/SA biomimetic 3D printed scaffolds with antibacterial activity for bone repair. Front Bioeng Biotechnol. 2023;11:1193605.
[55] 曾志奎,黄枫,李悦,等.骨碎补总黄酮对大鼠Masquelet诱导膜血管新生因子表达的影响[J]中华中医药学刊,2019,37(10): 2345-2348.
[56] 李定,李悦,黄枫,等.骨碎补总黄酮在诱导膜技术中对骨缺损区域血管形成和成骨质量的影响[J].中华中医药杂志,2019,34(11): 5086-5089.
[57] LI S, LI Y, JIANG Z, et al. Efficacy of total flavonoids of rhizoma drynariae on the blood vessels and the bone graft in the induced membrane. Phytomedicine. 2022;99:153995.
[58] JING X, YIN W, TIAN H, et al. Icariin doped bioactive glasses seeded with rat adipose-derived stem cells to promote bone repair via enhanced osteogenic and angiogenic activities. Life Sci. 2018;202:52-60.
[59] FAN D, LIU H, ZHANG Z, et al. Resveratrol and angiogenin-2 combined with PEGDA/TCS hydrogel for the targeted therapy of hypoxic bone defects via activation of the autophagy pathway. Front Pharmacol. 2021;12:618724.
[60] SONG JE, JEON YS, TIAN J, et al. Evaluation of silymarin/duck’s feet-derived collagen/hydroxyapatite sponges for bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2019;97:347-355.
[61] SONG JE, TIAN J, KOOK YJ, et al. A BMSCs-laden quercetin/duck’s feet collagen/hydroxyapatite sponge for enhanced bone regeneration. J Biomed Mater Res A. 2020;108(3):784-794.
[62] HUANG KH, CHEN CY, CHANG CY, et al. The synergistic effects of quercetin-containing 3D-printed mesoporous calcium silicate/calcium sulfate/poly-epsilon-caprolactone scaffolds for the promotion of osteogenesis in mesenchymal stem cells. J Formos Med Assoc. 2021;120(8):1627-1634.
[63] MA L, YU Y, LIU H, et al. Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair. Sci Rep. 2021;11(1):1027.
[64] LAMA S, LUCE A, BITTI G, et al. Polydatin incorporated in polycaprolactone nanofibers improves osteogenic differentiation. Pharmaceuticals (Basel). 2022;15(6):727.
[65] FENG G, ZHANG P, HUANG J, et al. Sequential release of panax notoginseng saponins and osteopractic total flavone from poly ((L)-Lactic Acid) scaffold for treating glucocorticoid-associated osteonecrosis of femoral head. J Funct Biomater. 2023;14(1):31.
[66] YUAN Z, WAN Z, WEI P, et al. Dual-controlled release of icariin/Mg(2+) from biodegradable microspheres and their synergistic upregulation effect on bone regeneration. Adv Healthc Mater. 2020;9(11):e2000211.
[67] ZHAO H, TANG J, ZHOU D, et al. Electrospun icariin-loaded core-shell collagen, polycaprolactone, hydroxyapatite composite scaffolds for the repair of rabbit tibia bone defects. Int J Nanomedicine. 2020;15:3039-3056.
[68] LEI H, ZHOU Z, LIU L, et al. Icariin-loaded 3D-printed porous Ti6Al4V reconstruction rods for the treatment of necrotic femoral heads. Acta Biomater. 2023;169:625-640.
[69] PREETHI A M, BELLARE J R. Concomitant effect of quercetin- and magnesium-doped calcium silicate on the osteogenic and antibacterial activity of scaffolds for bone regeneration. Antibiotics (Basel). 2021; 10(10):1170.
[70] XIE Y, SUN W, YAN F, et al. Icariin-loaded porous scaffolds for bone regeneration through the regulation of the coupling process of osteogenesis and osteoclastic activity. Int J Nanomedicine. 2019;14: 6019-6033.
[71] NEGRESCU A M, MITRAN V, DRAGHICESCU W, et al. TiO(2) Nanotubes functionalized with icariin for an attenuated in vitro immune response and improved in vivo osseointegration. J Funct Biomater. 2022;13(2):43.
[72] SHANG J, ZHOU C, JIANG C, et al. Recent developments in nanomaterials for upgrading treatment of orthopedics diseases. Front Bioeng Biotechnol. 2023;11:1221365.
[73] WANG K, YIN C, YE X, et al. A metabolic driven bio-responsive hydrogel loading psoralen for therapy of rheumatoid arthritis. Small. 2023;19(21):e2207319.
[74] WANG W, SUN L, ZHANG P, et al. An anti-inflammatory cell-free collagen/resveratrol scaffold for repairing osteochondral defects in rabbits. Acta Biomater. 2014;10(12):4983-4995.
[75] TESKAC K, KRISTL J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int J Pharm. 2010;390(1):61-69.
[76] WEI L, PAN Q, TENG J, et al. Intra-articular administration of PLGA resveratrol sustained-release nanoparticles attenuates the development of rat osteoarthritis. Mater Today Bio. 2024;24:100884.
[77] BOSE S, SARKAR N, BANERJEE D. Effects of PCL, PEG and PLGA polymers on curcumin release from calcium phosphate matrix for in vitro and in vivo bone regeneration. Mater Today Chem. 2018;8: 110-120.
[78] SARKAR N, BOSE S. Liposome-encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Appl Mater Interfaces. 2019;11(19):17184-17192.
[79] 李慧娟,王先流,沈炎冰,等.负载淫羊藿苷的壳聚糖基仿生支架的促软骨形成和炎症缓解作用[J].生物工程学报,2022,38(6): 2308-2321.
[80] SARKAR N, BOSE S. Controlled delivery of curcumin and vitamin k2 from hydroxyapatite-coated titanium implant for enhanced in vitro chemoprevention, osteogenesis, and in vivo osseointegration. ACS Appl Mater Interfaces. 2020;12(12):13644-13656.
[81] GAN J, DENG X, LE Y, et al. The development of naringin for use against bone and cartilage disorders. Molecules. 2023;28(9):3716.
[82] YANG X, ALMASSRI H, ZHANG Q, et al. Electrosprayed naringin-loaded microsphere/SAIB hybrid depots enhance bone formation in a mouse calvarial defect model. Drug Deliv. 2019;26(1):137-146.
[83] ZHAO ZH, MA XL, MA JX, et al. Sustained release of naringin from silk-fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Mater Today Bio. 2022;13:100206.
[84] ELKHOURY K, SANCHEZ-GONZALEZ L, LAVRADOR P, et al. Gelatin methacryloyl (GelMA) nanocomposite hydrogels embedding bioactive naringin liposomes. Polymers (Basel). 2020;12(12):2944.
[85] YU M, YOU D, ZHUANG J, et al. Controlled release of naringin in metal-organic framework-loaded mineralized collagen coating to simultaneously enhance osseointegration and antibacterial activity. ACS Appl Mater Interfaces. 2017;9(23):19698-19705.
[86] YU X, SHEN G, SHANG Q, et al. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Int J Biol Macromol. 2021;193(Pt A):510-518.
[87] KARIMI-SOFLOU R, MOHSENI-VADEGHANI E, KARKHANEH A. Controlled release of resveratrol from a composite nanofibrous scaffold: effect of resveratrol on antioxidant activity and osteogenic differentiation. J Biomed Mater Res A. 2022;110(1):21-30.
[88] ZHANG Y, WANG T, LI J, et al. Bilayer membrane composed of mineralized collagen and chitosan cast film coated with berberine-loaded PCL/PVP electrospun nanofiber promotes bone regeneration. Front Bioeng Biotechnol. 2021;9:684335. |