[1] 刘娟,丁清清,周白瑜,等.中国老年人肌少症诊疗专家共识(2021)[J].中华老年医学杂志,2021,40(8):943-952.
[2] PETERMANN-ROCHA F, BALNTZI V, GRAY SR, et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022;13(1):86-99.
[3] CRUZ-JENTOFT AJ, BAEYENS JP, BAUER JM, et al. Sarcopenia: european consensus on definition and diagnosis: report of the european working group on sarcopenia in older people. Age Ageing. 2010;39(4):412-423.
[4] ANTUNES AC, ARAÚJO DA, VERÍSSIMO MT, et al. Sarcopenia and hospitalisation costs in older adults: a cross-sectional study. Nutr Diet. 2017;74(1):46-50.
[5] CRUZ-JENTOFT AJ, SAYER AA. Sarcopenia. Lancet. 2019;393(10191):2636-2646.
[6] CANNATARO R, CARBONE L, PETRO JL, et al. Sarcopenia: etiology, nutritional approaches, and miRNAs. Int J Mol Sci. 2021;22(18):9724.
[7] LIGUORI I, RUSSO G, CURCIO F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757-772.
[8] CHEN M, WANG Y, DENG S, et al. Skeletal muscle oxidative stress and inflammation in aging: focus on antioxidant and anti-inflammatory therapy. Front Cell Dev Biol. 2022;10:964130.
[9] LIAN D, CHEN MM, WU H, et al. The role of oxidative stress in skeletal muscle myogenesis and muscle disease. Antioxidants (Basel). 2022;11(4):755.
[10] GAO Q, HU K, YAN C, et al. Associated factors of sarcopenia in community-dwelling older adults: a systematic review and meta-analysis. Nutrients. 2021; 13(12):4291.
[11] 王坤,罗炯,刘立,等.老年人肌少症的成因、评估及应对[J].中国组织工程研究,2019,23(11):1767-1773.
[12] VARESI A, CHIRUMBOLO S, CAMPAGNOLI LIM, et al. The role of antioxidants in the interplay between oxidative stress and senescence. Antioxidants (Basel). 2022;11(7):1224.
[13] KOCOT J, LUCHOWSKA-KOCOT D, KIEŁCZYKOWSKA M, et al. Does vitamin c influence neurodegenerative diseases and psychiatric disorders? Nutrients. 2017;9(7):659.
[14] MOSER MA, CHUN OK. Vitamin C and heart health: a review based on findings from epidemiologic studies. Int J Mol Sci. 2016;17(8):1328.
[15] BÖTTGER F, VALLÉS-MARTÍ A, CAHN L, et al. High-dose intravenous vitamin C, a promising multi-targeting agent in the treatment of cancer. J Exp Clin Cancer Res. 2021;40(1):343.
[16] NOWAK D. Vitamin C in human health and disease. Nutrients. 2021;13(5):1595.
[17] DUQUE P, VIEIRA CP, VIEIRA J. Advances in novel animal vitamin C biosynthesis pathways and the role of prokaryote-based inferences to understand their origin. Genes (Basel). 2022;13(10):1917.
[18] FENECH M, AMAYA I, VALPUESTA V, et al. Vitamin C content in fruits: biosynthesis and regulation. Front Plant Sci. 2019;9:2006.
[19] LINDBLAD M, TVEDEN-NYBORG P, LYKKESFELDT J. Regulation of vitamin C homeostasis during deficiency. Nutrients. 2013;5(8):2860-2879.
[20] SAVINI I, CATANI MV, DURANTI G, et al. Vitamin C homeostasis in skeletal muscle cells. Free Radic Biol Med. 2005;38(7):898-907.
[21] DOSEDĚL M, JIRKOVSKÝ E, MACÁKOVÁ K, et al. Vitamin C-sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients. 2021;13(2): 615.
[22] PADAYATTY SJ, LEVINE M. Vitamin C physiology: the known and the unknown and goldilocks. Oral Dis. 2016;22(6):463-493.
[23] GĘGOTEK A, SKRZYDLEWSKA E. Antioxidative and anti-inflammatory activity of ascorbic acid. Antioxidants (Basel). 2022;11(10):1993.
[24] 张闻怡,付泓博,杨茗.维生素与肌少症的相关性[J].中华老年医学杂志, 2022,41(8):1002-1006.
[25] CARITÁ AC, FONSECA-SANTOS B, SHULTZ JD, et al. Vitamin C: one compound, several uses. advances for delivery, efficiency and stability. Nanomedicine. 2020;24:102117.
[26] ROWE S, CARR AC. Global vitamin C status and prevalence of deficiency: a cause for concern? Nutrients. 2020;12(7):2008.
[27] CROOK J, HORGAS A, YOON SJ, et al. Insufficient vitamin C levels among adults in the united states: results from the NHANES surveys, 2003-2006. Nutrients. 2021;13(11):3910.
[28] ZHAO F, HE L, ZHAO L, et al. The status of dietary energy and nutrients intakes among chinese elderly aged 80 and above: data from the CACDNS 2015. Nutrients. 2021;13(5):1622.
[29] CARR AC, ROWE S. Factors affecting vitamin c status and prevalence of deficiency: a global health perspective. Nutrients. 2020;12(7):1963.
[30] SON J, YU Q, SEO JS. Sarcopenic obesity can be negatively associated with active physical activity and adequate intake of some nutrients in Korean elderly: findings from the Korea National Health and Nutrition Examination Survey (2008-2011). Nutr Res Pract. 2019;13(1):47-57.
[31] ABETE I, KONIECZNA J, ZULET MA, et al. Association of lifestyle factors and inflammation with sarcopenic obesity: data from the PREDIMED-Plus trial. J Cachexia Sarcopenia Muscle. 2019;10(5):974-984.
[32] CESARI M, PAHOR M, BARTALI B, et al. Antioxidants and physical performance in elderly persons: the Invecchiare in Chianti (InCHIANTI) study. Am J Clin Nutr. 2004;79(2):289-294.
[33] SAITO K, YOKOYAMA T, YOSHIDA H, et al. A significant relationship between plasma vitamin C concentration and physical performance among Japanese elderly women. J Gerontol A Biol Sci Med Sci. 2012;67(3):295-301.
[34] WELCH AA, JENNINGS A, KELAIDITI E, et al. Cross-sectional associations between dietary antioxidant vitamins C, E and carotenoid intakes and sarcopenic indices in women aged 18-79 years. Calcif Tissue Int. 2020;106(4):331-342.
[35] LEWIS LN, HAYHOE RPG, MULLIGAN AA, et al. Lower dietary and circulating vitamin c in middle- and older-aged men and women are associated with lower estimated skeletal muscle mass. J Nutr. 2020;150(10):2789-2798.
[36] NASIMI N, SOHRABI Z, DABBAGHMANESH MH, et al. A Novel fortified dairy product and sarcopenia measures in sarcopenic older adults: a double-blind randomized controlled trial. J Am Med Dir Assoc. 2021;22(4):809-815.
[37] AHMADI A, EFTEKHARI MH, MAZLOOM Z, et al. Fortified whey beverage for improving muscle mass in chronic obstructive pulmonary disease: a single-blind, randomized clinical trial. Respir Res. 2020;21(1):216.
[38] PASSERIEUX E, HAYOT M, JAUSSENT A, et al. Effects of vitamin C, vitamin E, zinc gluconate, and selenomethionine supplementation on muscle function and oxidative stress biomarkers in patients with facioscapulohumeral dystrophy: a double-blind randomized controlled clinical trial. Free Radic Biol Med. 2015; 81:158-169.
[39] KANG KK, LEE EJ, KIM YD, et al. Vitamin C improves therapeutic effects of adipose-derived stem cell transplantation in mouse tendonitis model. In Vivo. 2017;31(3):343-348.
[40] KIM AY, LEE EM, LEE EJ, et al. Effects of vitamin C on cytotherapy-mediated muscle regeneration. Cell Transplant. 2013;22(10):1845-1858.
[41] RAHMAN F, BORDIGNON B, CULERRIER R, et al. Ascorbic acid drives the differentiation of mesoderm-derived embryonic stem cells. Involvement of p38 MAPK/CREB and SVCT2 transporter. Mol Nutr Food Res. 2017. doi:10.1002/mnfr.201600506.
[42] 胡飞, 赵晓光. 体育运动与营养补剂对老年性骨骼肌减少症的干预[J].中国老年学杂志,2023,43(6):1524-1530.
[43] HIGGINS MR, IZADI A, KAVIANI M. Antioxidants and exercise performance: with a focus on vitamin E and C supplementation. Int J Environ Res Public Health. 2020;17(22):8452.
[44] OTOCKA-KMIECIK A, KRÓL A. The role of vitamin c in two distinct physiological states: physical activity and sleep. Nutrients. 2020;12(12):3908.
[45] BOBEUF F, LABONTÉ M, KHALIL A, et al. Effects of resistance training combined with antioxidant supplementation on fat-free mass and insulin sensitivity in healthy elderly subjects. Diabetes Res Clin Pract. 2010;87(1):e1-e3.
[46] GOMES MJ, MARTINEZ PF, PAGAN LU, et al. Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget. 2017;8(12):20428-20440.
[47] BJØRNSEN T, SALVESEN S, BERNTSEN S, et al. Vitamin C and E supplementation blunts increases in total lean body mass in elderly men after strength training. Scand J Med Sci Sports. 2016;26(7):755-763.
[48] STUNES AK, SYVERSEN U, BERNTSEN S, et al. High doses of vitamin C plus E reduce strength training-induced improvements in areal bone mineral density in elderly men. Eur J Appl Physiol. 2017;117(6):1073-1084.
[49] WYCKELSMA VL, VENCKUNAS T, BRAZAITIS M, et al. Vitamin C and E treatment blunts sprint interval training-induced changes in inflammatory mediator-, calcium-, and mitochondria-related signaling in recreationally active elderly humans. Antioxidants (Basel). 2020;9(9):879.
[50] LIU C, LIU N, XIA Y, et al. Osteoporosis and sarcopenia-related traits: a bi-directional mendelian randomization study. Front Endocrinol (Lausanne). 2022; 13:975647.
[51] LYKKESFELDT J, TVEDEN-NYBORG P. The pharmacokinetics of vitamin C. Nutrients. 2019;11(10):2412.
[52] RICHARDS JC, CRECELIUS AR, LARSON DG, et al. Acute ascorbic acid ingestion increases skeletal muscle blood flow and oxygen consumption via local vasodilation during graded handgrip exercise in older adults. Am J Physiol Heart Circ Physiol. 2015;309(2):H360-H368.
[53] GOLDFARB AH, MCKENZIE MJ, BLOOMER RJ. Gender comparisons of exercise-induced oxidative stress: influence of antioxidant supplementation. Appl Physiol Nutr Metab. 2007;32(6):1124-1131.
[54] MARGARITELIS NV, PASCHALIS V, THEODOROU AA, et al. Antioxidants in personalized nutrition and exercise. Adv Nutr. 2018;9(6):813-823.
[55] PASCHALIS V, THEODOROU AA, KYPAROS A, et al. Low vitamin C values are linked with decreased physical performance and increased oxidative stress: reversal by vitamin C supplementation. Eur J Nutr. 2016;55(1):45-53.
[56] RADAK Z, ISHIHARA K, TEKUS E, et al. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. Redox Biol. 2017;12:285-290.
[57] PAULSEN G, CUMMING KT, HAMARSLAND H, et al. Can supplementation with vitamin C and E alter physiological adaptations to strength training? BMC Sports Sci Med Rehabil. 2014;6:28.
[58] PINGITORE A, LIMA G PP, MASTORCI F, et al. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition. 2015; 31(7-8):916-922.
[59] ŻYCHOWSKA M, GRZYBKOWSKA A, ZASADA M, et al. Effect of six weeks 1000 mg/day vitamin C supplementation and healthy training in elderly women on genes expression associated with the immune response - a randomized controlled trial. J Int Soc Sports Nutr. 2021;18(1):19.
[60] WANG Y, LIU Q, QUAN H, et al. Nutraceuticals in the prevention and treatment of the muscle atrophy. Nutrients. 2021;13(6):1914.
[61] GOMEZ-CABRERA MC, ARC-CHAGNAUD C, SALVADOR-PASCUAL A, et al. Redox modulation of muscle mass and function. Redox Biol. 2020;35:101531.
[62] TAKISAWA S, FUNAKOSHI T, YATSU T, et al. Vitamin C deficiency causes muscle atrophy and a deterioration in physical performance. Sci Rep. 2019;9(1):4702.
[63] BOWIE AG, O’NEILL LA. Vitamin C inhibits NF-kappa B activation by TNF via the activation of p38 mitogen-activated protein kinase. J Immunol. 2000;165(12): 7180-7188.
[64] JUDGE AR, SELSBY JT, DODD SL. Antioxidants attenuate oxidative damage in rat skeletal muscle during mild ischaemia. Exp Physiol. 2008;93(4):479-485.
[65] TONON E, FERRETTI R, SHIRATORI JH, et al. Ascorbic acid protects the diaphragm muscle against myonecrosis in mdx mice. Nutrition. 2012;28(6):686-690.
[66] TANG P, ZHU R, GU Y, et al. Ascorbic Acid Attenuates Multifidus Muscles Injury and Atrophy After Posterior Lumbar Spine Surgery by Suppressing Inflammation and Oxidative Stress in a Rat Model. Spine (Phila Pa 1976). 2018;43(21):E1249-E1259.
[67] MOUSTOGIANNIS A, PHILIPPOU A, TASO O, et al. The Effects of Muscle Cell Aging on Myogenesis. Int J Mol Sci, 2021;22(7):3721.
[68] MITSUMOTO Y, LIU Z, KLIP A. A long-lasting vitamin C derivative, ascorbic acid 2-phosphate, increases myogenin gene expression and promotes differentiation in L6 muscle cells. Biochem Biophys Res Commun. 1994;199(1):394-402.
[69] SHIMA A, PHAM J, BLANCO E, et al. IGF-I and vitamin C promote myogenic differentiation of mouse and human skeletal muscle cells at low temperatures. Exp Cell Res. 2011;317(3):356-366.
[70] DURAN BOS, GÓES GA, ZANELLA BTT, et al. Ascorbic acid stimulates the in vitro myoblast proliferation and migration of pacu (Piaractus mesopotamicus). Sci Rep. 2019;9(1):2229.
[71] SCHIAFFINO S, DYAR KA, CICILIOT S, et al. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280(17):4294-4314.
[72] ZANELLA BTT, MAGIORE IC, DURAN BOS, et al. Ascorbic acid supplementation improves skeletal muscle growth in pacu (Piaractus mesopotamicus) juveniles: in vivo and in vitro studies. Int J Mol Sci. 2021;22(6):2995.
[73] FANG J, LI M, ZHANG G, et al. Vitamin C enhances the ex vivo proliferation of porcine muscle stem cells for cultured meat production. Food Funct. 2022;13(9): 5089-5101.
[74] SCIOLI MG, CONIGLIONE F, GREGGI C, et al. Ascorbic acid reduces ropivacaine-induced myotoxicity in cultured human osteoporotic skeletal muscle cell. BMC Musculoskelet Disord. 2023;24(1):576.
[75] IKEDA K, ITO A, SATO M, et al. Effects of heat stimulation and l-ascorbic acid 2-phosphate supplementation on myogenic differentiation of artificial skeletal muscle tissue constructs. J Tissue Eng Regen Med. 2017;11(5):1322-1331.
[76] DIAO Z, MATSUI T, FUNABA M. Stimulation of myogenesis by ascorbic acid and capsaicin. Biochem Biophys Res Commun. 2021;568:83-88.
[77] LI P, ZHANG X, TIAN L, et al. Vitamin C Promotes Muscle Development Mediated by the Interaction of CSRP3 with MyoD and MyoG. J Agric Food Chem. 2022; 70(23):7158-7169.
[78] JOANISSE S, NEDERVEEN JP, SNIJDERS T, et al. Skeletal muscle regeneration, repair and remodelling in aging: the importance of muscle stem cells and vascularization. Gerontology. 2017;63(1):91-100.
[79] OMEROĞLU S, PEKER T, TÜRKÖZKAN N, et al. High-dose vitamin C supplementation accelerates the Achilles tendon healing in healthy rats. Arch Orthop Trauma Surg. 2009;129(2):281-286.
[80] VAFIADAKI E, ARVANITIS DA, SANOUDOU D. Muscle LIM protein: master regulator of cardiac and skeletal muscle functions. Gene. 2015;566(1):1-7.
[81] FUKADA SI, AKIMOTO T, SOTIROPOULOS A. Role of damage and management in muscle hypertrophy: Different behaviors of muscle stem cells in regeneration and hypertrophy. Biochim Biophys Acta Mol Cell Res. 2020;1867(9):18742.
[82] ALWAY SE, MOHAMED JS, MYERS MJ. Mitochondria initiate and regulate sarcopenia. Exerc Sport Sci Rev. 2017;45(2):58-69.
[83] Coen PM, Musci RV, Hinkley JM, et al. Mitochondria as a target for mitigating sarcopenia. Front Physiol. 2019;9:1883.
[84] HWANG WS, PARK SH, KIM HS, et al. Ascorbic acid extends replicative life span of human embryonic fibroblast by reducing DNA and mitochondrial damages. Nutr Res Pract. 2007;1(2):105-112.
[85] FIORANI M, SCOTTI M, GUIDARELLI A, et al. SVCT2-Dependent plasma and mitochondrial membrane transport of ascorbic acid in differentiating myoblasts. Pharmacol Res. 2020;159:105042. |