中国组织工程研究 ›› 2023, Vol. 27 ›› Issue (32): 5238-5248.doi: 10.12307/2023.496
• 组织构建综述 tissue construction review • 上一篇
韩 杰,林智宇,徐志为,章晓云,尚昱志,刘 昊
收稿日期:
2022-07-11
接受日期:
2022-08-22
出版日期:
2023-11-18
发布日期:
2023-03-23
通讯作者:
韩杰,广西中医药大学附属瑞康医院,广西壮族自治区南宁市 530011
作者简介:
韩杰,男,1981年生,广西壮族自治区北海市人,汉族,2014年广西中医药大学毕业,硕士,主任医师,主要从事骨与关节相关疾病研究。
基金资助:
Han Jie, Lin Zhiyu, Xu Zhiwei, Zhang Xiaoyun, Shang Yuzhi, Liu Hao
Received:
2022-07-11
Accepted:
2022-08-22
Online:
2023-11-18
Published:
2023-03-23
Contact:
Han Jie, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
About author:
Han Jie, Master, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
Supported by:
摘要:
文题释义:
miRNA:系由18-25个核苷酸组成的非蛋白质编码单链小分子RNA,其能调控人体近1/3的基因,并参与包括骨科常见疾病在内的各种疾病的生理及病理过程,在发育、细胞增殖分化、细胞凋亡及代谢等多种生理过程中发挥着重要作用。股骨头坏死:是一种因多种原因引起股骨头出现血液供应障碍,继而出现股骨头塌陷及结构改变现象,最终引发患者髋关节出现疼痛、功能障碍等一系列症状,导致患者生活质量遭受严重影响的骨伤科临床常见难治性疾病之一。
结果与结论:①miRNA在股骨头坏死骨代谢机制中参与调控成骨细胞与破骨细胞的分化,从而对股骨头坏死病程进展起到不同程度的影响。②miRNA可以通过直接或调控Wnt/β-catenin、PI3K/Akt、转化生长因子β、MAPK及相关信号通路,在骨代谢机制下对股骨头坏死在成骨细胞与破骨细胞分化进程中起到不同程度的调控作用,通过不同miRNA在此进程中的不同影响,能对因成骨细胞与破骨细胞分化失衡而导致的股骨头坏死起到促进或抑制作用,因此可根据其对股骨头坏死病情改善的正负向关系进行调控,最终对股骨头坏死病情起到缓解作用。③近年来miRNA在防治股骨头坏死领域主要从多种发病机制联动的角度进行阐述,并未从单一的发病机制角度进行分析。④基于现有的基础,未来需要系统深入开展关于miRNA在骨代谢机制下干预股骨头坏死的研究,并在此基础上探究其在直接作用下是否存在相互作用的可能;同时完善其在除骨代谢机制外其他机制领域的研究,继续深入研究miRNA在骨代谢机制下干预股骨头坏死的分子机制以及其与骨组织工程之间的联系,为防治股骨头坏死提供思路。
https://orcid.org/0000-0003-4736-9131(韩杰)
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程
中图分类号:
韩 杰, 林智宇, 徐志为, 章晓云, 尚昱志, 刘 昊. miRNA通过骨代谢机制干预股骨头坏死[J]. 中国组织工程研究, 2023, 27(32): 5238-5248.
Han Jie, Lin Zhiyu, Xu Zhiwei, Zhang Xiaoyun, Shang Yuzhi, Liu Hao. Interventional effect of microRNA on osteonecrosis of the femoral head through bone metabolism mechanism[J]. Chinese Journal of Tissue Engineering Research, 2023, 27(32): 5238-5248.
[1] ZHANG Y, JIA S, WEI Q, et al. CircRNA_25487 inhibits bone repair in trauma-induced osteonecrosis of femoral head by sponging miR-134-3p through p21. Regen Ther. 2020;16:23-31. [2] LIU L, ZHANG Q, SUN W, et al. Corticosteroid-induced osteonecrosis of the femoral head: detection, diagnosis, and treatment in earlier stages. Chin Med J (Engl). 2017;130(21):2601-2607. [3] HAMADA H, ANDO W, TAKAO M, et al. Gamma-glutamyl transferase: a useful marker of habitual drinking in cases of alcohol-associated osteonecrosis of the femoral head. Alcohol Alcohol. 2021;56(2):175-180. [4] YOON BH, MONT MA, KOO KH, et al. The 2019 revised version of association research circulation osseous staging system of osteonecrosis of the femoral head. J Arthroplasty. 2020;35(4):933-940. [5] ZHAO D, ZHANG F, WANG B, et al. Guidelines for clinical diagnosis and treatment of osteonecrosis of the femoral head in adults (2019 version). J Orthop Translat. 2020:100-110. [6] 雷志强,曾平,陈卫衡,等.股骨头坏死流行病学特点分析[J].中医正骨,2020,32(1):4-6. [7] COHEN-ROSENBLUM A, CUI Q. Osteonecrosis of the femoral head. Orthop Clin North Am. 2019;50(2):139-149. [8] KANG JS, SUH YJ, MOON KH, et al. Clinical efficiency of bone marrow mesenchymal stem cell implantation for osteonecrosis of the femoral head: a matched pair control study with simple core decompression. Stem Cell Res Ther. 2018;9(1):274. [9] 李振源,辜志昌.股骨头坏死的中西医治疗研究[J].医学信息,2021, 34(7):56-58. [10] LEE RC, FEINBAUM RL, AMBROS V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843-854. [11] WU X, SUN W, TAN M. Noncoding RNAs in steroid-induced osteonecrosis of the femoral head. Biomed Res Int. 2019;2019: 8140595. [12] LAWRIE CH, GAL S, DUNLOP HM, ET AL. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141(5):672-675. [13] HAMMOND SM. An overview of microRNAs. Adv Drug Deliv Rev. 2015; 87:3-14. [14] CIRERA-SALINAS D, PAUTA M, ALLEN RM, et al. Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle. 2012;11(5):922-933. [15] STAKOS DA, STAMATELOPOULOS K, BAMPATSIAS D, et al. The Alzheimer’s disease amyloid-beta hypothesis in cardiovascular aging and disease: JACC Focus Seminar. J Am Coll Cardiol. 2020;75(8):952-967. [16] 唐德平,邢梦洁,宋文涛,等.microRNA治疗在癌症及其他疾病中的研究进展[J].中国生物工程杂志,2021,41(11):64-73. [17] LI Y, YANG F, GAO M, et al. miR-149-3p regulates the switch between adipogenic and osteogenic differentiation of bmscs by targeting FTO. Mol Ther Nucleic Acids. 2019;17:590-600. [18] 乔志,李劲峰,陈松峰,等.微小RNA-345-5p抑制Smad1蛋白翻译调节成骨细胞功能[J].中华实验外科杂志,2021,38(12):2444-2447. [19] WANG X, NING Y, ZHOU B, et al. Integrated bioinformatics analysis of the osteoarthritis-associated microRNA expression signature. Mol Med Rep. 2018;17(1):1833-1838. [20] ZHENG S, JIANG F, GE D, et al. LncRNA SNHG3/miRNA-151a-3p/RAB22A axis regulates invasion and migration of osteosarcoma. Biomed Pharmacother. 2019;112:108695. [21] LI Z, YANG B, WENG X, et al. Emerging roles of microRNAs in osteonecrosis of the femoral head. Cell Prolif. 2018;51(1):e12405. [22] QU B, HE J, ZENG Z, et al. MiR-155 inhibition alleviates suppression of osteoblastic differentiation by high glucose and free fatty acids in human bone marrow stromal cells by upregulating SIRT1. Pflugers Arch.2020;472(4):473-480. [23] KANG M, HUANG CC, LU Y, et al. Bone regeneration is mediated by macrophage extracellular vesicles. Bone. 2020;141:115627. [24] LIU H, ZHONG L, YUAN T, et al. MicroRNA-155 inhibits the osteogenic differentiation of mesenchymal stem cells induced by BMP9 via downregulation of BMP signaling pathway. Int J Mol Med. 2018;41(6): 3379-3393. [25] SUL OJ, SUNG YB, RAJASEKARAN M, et al. MicroRNA-155 induces autophagy in osteoclasts by targeting transforming growth factor β-activated kinase 1-binding protein 2 upon lipopolysaccharide stimulation. Bone. 2018;116:279-289. [26] MAO Z, ZHU Y, HAO W, et al. MicroRNA-155 inhibition up-regulates LEPR to inhibit osteoclast activation and bone resorption via activation of AMPK in alendronate-treated osteoporotic mice. IUBMB Life. 2019; 71(12):1916-1928. [27] INOSE H, OCHI H, KIMURA A, et al. A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci U S A. 2009;106(49): 20794-20799. [28] ZHANG Z, JIN A, YAN D. MicroRNA 206 contributes to the progression of steroid induced avascular necrosis of the femoral head by inducing osteoblast apoptosis by suppressing programmed cell death 4. Mol Med Rep. 2018;17(1):801-808. [29] CHEN Y, YANG Y, FAN X, et al. miR-206 inhibits osteogenic differentiation of bone marrow mesenchymal stem cells by targetting glutaminase. Biosci Rep. 2019;39(3):BSR20181108. [30] YE N, YANG Y, MA Z, et al. Ghrelin promotes the osteogenic differentiation of rMSCs via miR-206 and the ERK1/2 pathway. Cytotechnology. 2020;72(5):707-713. [31] GU C, XU Y, ZHANG S, et al. miR-27a attenuates adipogenesis and promotes osteogenesis in steroid-induced rat BMSCs by targeting PPARγ and GREM1. Sci Rep. 2016;6:38491. [32] BAI Y, LIU Y, JIN S, et al. Expression of microRNA 27a in a rat model of osteonecrosis of the femoral head and its association with TGF β/Smad7 signalling in osteoblasts. Int J Mol Med. 2019;43(2):850-860. [33] 黄涛,崔泳.miRNA-27α调控PPARγ/ApoA5通路对大鼠激素性股骨坏死的影响研究[J].实用骨科杂志,2021,27(4):330-334. [34] 张根生,刘瑞宇,党晓谦,等.miR-27a过表达的血管内皮细胞来源外泌体改善股骨头坏死实验研究[J].中国修复重建外科杂志,2021, 35(3):356-365. [35] YOU L, PAN L, CHEN L, et al. MiR-27a is Essential for the shift from osteogenic differentiation to adipogenic differentiation of mesenchymal stem cells in postmenopausal osteoporosis. Cell Physiol Biochem. 2016;39(1):253-265. [36] QI XB, JIA B, WANG W, et al. Role of miR-199a-5p in osteoblast differentiation by targeting TET2. Gene. 2020;726:144193. [37] HUANG S, LI Y, WU P, et al. microRNA-148a-3p in extracellular vesicles derived from bone marrow mesenchymal stem cells suppresses SMURF1 to prevent osteonecrosis of femoral head. J Cell Mol Med. 2020;24(19):11512-11523. [38] WU F, HUANG W, YANG Y, et al. miR-155-5p regulates mesenchymal stem cell osteogenesis and proliferation by targeting GSK3B in steroid-associated osteonecrosis. Cell Biol Int. 2021;45(1):83-91. [39] CHEN S, TANG Y, LIU Y, et al. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif. 2019;52(5):e12669. [40] 张扬,张西正,韩标,等.miR-98-5调控CKIP-1促小鼠骨髓间充质干细胞成骨分化的实验研究[J].医用生物力学,2019,34(S1):65. [41] YU S, LUAN J, LIU Y, et al. MiR-296 promotes osteoblast differentiation by upregulating Cbfal. Pharmacology. 2020;105(3-4):190-201. [42] ZHANG X, YOU J, DONG X, et al. Administration of mircoRNA-135b-reinforced exosomes derived from MSCs ameliorates glucocorticoid-induced osteonecrosis of femoral head (ONFH) in rats. J Cell Mol Med. 2020;24(23):13973-13983. [43] HUANG M, LI X, ZHOU C, et al. Noncoding RNA miR-205-5p mediates osteoporosis pathogenesis and osteoblast differentiation by regulating RUNX2. J Cell Biochem. 2020;121(10):4196-4203. [44] 张浩,王拥军,桑敬伟,等.miR-224在骨髓间充质干细胞成骨分化过程中的作用机制[J].中国老年学杂志,2021,41(18):4040-4044. [45] WU M, WANG H, KONG D, et al. miR-452-3p inhibited osteoblast differentiation by targeting Smad4. PeerJ. 2021;9:e12228. [46] 徐昊,许闫严,马中希,等.hsa-miRNA-216a-5p在骨髓间充质干细胞成骨分化过程中负性调控NPR3表达[J].武汉大学学报(医学版), 2022,43(2):215-219. [47] MA X, BIAN Y, YUAN H, et al. Human amnion-derived mesenchymal stem cells promote osteogenic differentiation of human bone marrow mesenchymal stem cells via H19/miR-675/APC axis. Aging (Albany NY). 2020;12(11):10527-10543. [48] ZHANG F, CAO K, DU G, et al. miR-29a promotes osteoblast proliferation by downregulating DKK-1 expression and activating Wnt/β-catenin signaling pathway. Adv Clin Exp Med. 2019;28(10):1293-1300. [49] LI Z, HU H, ZHANG X, et al. MiR-291a-3p regulates the BMSCs differentiation via targeting DKK1 in dexamethasone-induced osteoporosis. Kaohsiung J Med Sci. 2020;36(1):35-42. [50] WANG Q, MIAO Y, QIAN Z, et al. MicroRNA-15a-5p plays a role in osteogenic MC3T3-E1 cells differentiation by targeting PDCD4 (programmed cell death 4) via Wnt/β-catenin dependent signaling pathway. Bioengineered. 2021;12(1):8173-8185. [51] ZHANG Z, JIANG W, HU M, et al. MiR-486-3p promotes osteogenic differentiation of BMSC by targeting CTNNBIP1 and activating the Wnt/β-catenin pathway. Biochem Biophys Res Commun. 2021;566:59-66. [52] CHEN N, YANG H, SONG L, et al. MicroRNA-409-3p promotes osteoblastic differentiation via activation of Wnt/β-catenin signaling pathway by targeting SCAI. Biosci Rep. 2021;41(1):BSR20201902. [53] HAO W, LIU H, ZHOU L, et al. MiR-122-3p regulates the osteogenic differentiation of mouse adipose-derived stem cells via Wnt/β catenin signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(9):3892-3898. [54] ZHANG W, CHI C, MENG X, et al. miRNA‑15a‑5p facilitates the bone marrow stem cell apoptosis of femoral head necrosis through the Wnt/β‑catenin/PPARγ signaling pathway. Mol Med Rep. 2019;19(6):4779-4787. [55] YIN C, TIAN Y, YU Y, et al. miR-129-5p Inhibits Bone Formation Through TCF4. Front Cell Dev Biol. 2020;8:600641. [56] JOHN AA, PRAKASH R, SINGH D. miR-487b-3p impairs osteoblastogenesis by targeting Notch-regulated ankyrin-repeat protein (Nrarp). J Endocrinol. 2019;241(3):249-263. [57] XIE W, WANG Z, ZHANG Y, et al. Beneficial role of microRNA-328-3p in fracture healing by enhancing osteoblastic viability through the PTEN/PI3K/AKT pathway. Exp Ther Med. 2020;20(6):271. [58] YANG C, LIU X, ZHAO K, et al. miRNA-21 promotes osteogenesis via the PTEN/PI3K/Akt/HIF-1α pathway and enhances bone regeneration in critical size defects. Stem Cell Res Ther. 2019;10(1):65. [59] YOU L, GU W, CHEN L, et al. MiR-378 overexpression attenuates high glucose-suppressed osteogenic differentiation through targeting CASP3 and activating PI3K/Akt signaling pathway. Int J Clin Exp Pathol. 2014;7(10):7249-7261. [60] LIN L, WANG H, GUO W, et al. Osteosarcoma-derived exosomal miR-501-3p promotes osteoclastogenesis and aggravates bone loss. Cell Signal. 2021;82:109935. [61] LUO T, ZHOU X, JIANG E, et al. Osteosarcoma cell-derived small extracellular vesicles enhance osteoclastogenesis and bone resorption through transferring microRNA-19a-3p. Front Oncol. 2021;11:618662. [62] WANG M, ZHAO M, GUO Q, et al. Non-small cell lung cancer cell-derived exosomal miR-17-5p promotes osteoclast differentiation by targeting PTEN. Exp Cell Res. 2021;408(1):112834. [63] TIAN L, SUN S, LI W, et al. Down-regulated microRNA-141 facilitates osteoblast activity and inhibits osteoclast activity to ameliorate osteonecrosis of the femoral head via up-regulating TGF-β2. Cell Cycle. 2020;19(7):772-786. [64] CHEN Y, SUN C, LU J, et al. MicroRNA-590-5p antagonizes the inhibitory effect of high glucose on osteoblast differentiation by suppressing Smad7 in MC3T3-E1 cells. J Int Med Res. 2019;47(4):1740-1748. [65] FANG S, CHEN L, CHEN H, et al. MiR-15b ameliorates SONFH by targeting Smad7 and inhibiting osteogenic differentiation of BMSCs. Eur Rev Med Pharmacol Sci. 2019;23(22):9761-9771. [66] QIN X, WEN K, WU X, et al. MiR-183 regulates the differentiation of osteoblasts in the development of osteoporosis by targeting Smad4. Acta Histochem. 2021;123(7):151786. [67] JIAO F, TANG W, HUANG H, et al. Icariin promotes the migration of bmscs in vitro and in vivo via the mapk signaling pathway. Stem Cells Int. 2018;2018:2562105. [68] AUH QS, PARK KR, YUN HM, et al. Sulfuretin promotes osteoblastic differentiation in primary cultured osteoblasts and in vivo bone healing. Oncotarget. 2016;7(48):78320-78330. [69] SANUI T, TANAKA U, FUKUDA T, et al. Mutation of Spry2 induces proliferation and differentiation of osteoblasts but inhibits proliferation of gingival epithelial cells. J Cell Biochem. 2015;116(4):628-639. [70] LIAO W, NING Y, XU H, et al. BMSC-derived exosomes carrying microRNA-122-5p promote proliferation of osteoblasts in osteonecrosis of the femoral head. Clin Sci (Lond). 2019;133(18):1955-1975. [71] ZHA J, WANG X, DI J. MiR-920 promotes osteogenic differentiation of human bone mesenchymal stem cells by targeting HOXA7. J Orthop Surg Res. 2020;15(1):254. [72] JIANG K, TENG G, CHEN Y. MicroRNA-23 suppresses osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting the MEF2C-mediated MAPK signaling pathway. J Gene Med. 2020;22(10):e3216. [73] JIANG B, YUAN C, HAN J, et al. miR-143-3p inhibits the differentiation of osteoclast induced by synovial fibroblast and monocyte coculture in adjuvant-induced arthritic rats. Biomed Res Int. 2021;2021:5565973. [74] JIANG Y, ZHANG J, LI Z, et al. Bone marrow mesenchymal stem cell-derived exosomal miR-25 regulates the ubiquitination and degradation of Runx2 by SMURF1 to promote fracture healing in mice. Front Med (Lausanne). 2020;7:577578. [75] 李广杰. microRNA-149/SDF-1轴刺激骨髓间充质干细胞成骨分化的研究[D].兰州:兰州大学,2020. [76] YANG W, ZHU W, YANG Y, et al. Exosomal miR-100-5p inhibits osteogenesis of hBMSCs and angiogenesis of HUVECs by suppressing the BMPR2/Smad1/5/9 signalling pathway. Stem Cell Res Ther. 2021; 12(1):390. [77] ZHANG X, SUN M, ZHANG L, et al. The potential function of miR-135b-mediated JAK2/STAT3 signaling pathway during osteoblast differentiation. Kaohsiung J Med Sci. 2020;36(9):673-681. |
[1] | 郭淑慧, 杨晔, 江杨洋, 许建文. 神经源性膀胱miRNA-mRNA调控网络的筛选与验证[J]. 中国组织工程研究, 2023, 27(在线): 1-8. |
[2] | 孙可欣, 曾今实, 李佳, 蒋海越, 刘霞. 力学刺激提高生物3D打印软骨构建物基质的形成[J]. 中国组织工程研究, 2023, 27(在线): 1-7. |
[3] | 农复香, 蒋志雄, 李英豪, 许文聪, 施智兰, 罗 慧, 张晴朗, 钟 爽, 唐梅文. 外泌体调控铁死亡在疾病诊断治疗中的应用与作用[J]. 中国组织工程研究, 2023, 27(在线): 1-10. |
[4] | 钟毅征, 黄培镇, 蔡群斌, 郑利钦, 何兴鹏, 董 航. 影响骨小梁微有限元模型最大应力的骨微结构指标[J]. 中国组织工程研究, 2023, 27(9): 1313-1318. |
[5] | 李晓敏, 田向东 , 谭冶彤 , 朱光宇 , 王荣田 , 王 剑 , 薛志鹏, 马 晟, 胡元一, 黄 叶, 丁天送. 骨质疏松性内侧室膝骨关节炎胫骨高位截骨后下肢力线及膝关节功能的变化[J]. 中国组织工程研究, 2023, 27(9): 1325-1329. |
[6] | 吴韬光, 聂少波, 陈 华, 朱正国, 祁 麟, 唐佩福. 新型多维交叉锁定钢板固定股骨转子下骨不连的生物力学特征[J]. 中国组织工程研究, 2023, 27(9): 1330-1334. |
[7] | 唐辉宇, 侯 彪, 夏晓丹, 向 伟, 谢松林. 机械牵张应力对兔肢体截骨后动脉血管的影响[J]. 中国组织工程研究, 2023, 27(9): 1422-1426. |
[8] | 彭志鑫, 闫文刚, 王 坤, 张振江. 3D打印前臂外固定支具的有限元分析与结构优化设计[J]. 中国组织工程研究, 2023, 27(9): 1340-1345. |
[9] | 吴天亮, 陶秀霞, 徐宏光. 三维有限元法分析不同骨密度对单纯斜外侧腰椎椎间融合后融合器下沉的影响[J]. 中国组织工程研究, 2023, 27(9): 1352-1358. |
[10] | 温星花, 丁焕文, 成 凯, 闫晓楠, 彭元昊, 王宇宁, 刘 康, 张挥武. 比格犬股骨大段骨缺损髓内钉固定方案设计的三维有限元建模分析[J]. 中国组织工程研究, 2023, 27(9): 1371-1376. |
[11] | 郑宏瑞, 张文杰, 王云华, 何 斌, 沈亚骏, 范 磊. 股骨颈动力交叉钉系统联合富血小板血浆治疗股骨颈骨折[J]. 中国组织工程研究, 2023, 27(9): 1390-1395. |
[12] | 郑 博, 张秀莉, 周 浩, 何泽壁, 周 进, 周维云, 李 鹏. 关节镜辅助下锁定空心螺钉固定与切开复位钢板内固定治疗Schatzker Ⅱ-Ⅲ型胫骨平台骨折的早期CT评价[J]. 中国组织工程研究, 2023, 27(9): 1410-1416. |
[13] | 李 超, 张佩佩, 徐朦婷, 李琳琳, 丁江涛, 刘西花, 毕鸿雁. 肌骨超声评价呼吸训练改善慢性非特异性下背痛患者多裂肌的形态学改变[J]. 中国组织工程研究, 2023, 27(9): 1417-1421. |
[14] | 潘钟杰, 秦志鸿, 郑铁军, 丁晓飞, 廖世杰. 股骨头坏死发病机制中非编码RNA的靶标性[J]. 中国组织工程研究, 2023, 27(9): 1441-1447. |
[15] | 蔡志浩, 谢召勇. 股骨颈前倾角测量评估:如何建立统一的方法和标准[J]. 中国组织工程研究, 2023, 27(9): 1448-1454. |
1.1.7 检索策略 以中国知网和PubMed数据库检索策略为例,见图1。
1.1.8 检索文献量 初步检索到外文文献2 452篇,中文文献613篇。
1.3 文献质量评估和数据的提取 数据库综合检索到3 065篇相关文献,按照入选标准进行标题及摘要的初步筛查,排除重复性陈旧和无参考意义的文献。最终根据入组标准纳入共77篇文献,仔细阅读文章内容,总结与文章相符的有效信息并严谨撰写文章。文献检索流程见图2。
文题释义:
miRNA:系由18-25个核苷酸组成的非蛋白质编码单链小分子RNA,其能调控人体近1/3的基因,并参与包括骨科常见疾病在内的各种疾病的生理及病理过程,在发育、细胞增殖分化、细胞凋亡及代谢等多种生理过程中发挥着重要作用。股骨头坏死:是一种因多种原因引起股骨头出现血液供应障碍,继而出现股骨头塌陷及结构改变现象,最终引发患者髋关节出现疼痛、功能障碍等一系列症状,导致患者生活质量遭受严重影响的骨伤科临床常见难治性疾病之一。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||