[1] 李磊, 方诗元. Singh指数在骨质疏松性髋部骨折中的应用研究[J]. 中国骨质疏松杂志,2016,22(6):777-780.
[2] IM GI, PARK PG, MOON SW. The relationship between radiological parameters from plain hip radiographs and bone mineral density in a Korean population. J Bone Miner Metab. 2012;30(5):504-508.
[3] THOMAS CD, MAYHEW PM, POWER J, et al. Femoral neck trabecular bone: loss with aging and role in preventing fracture. J Bone Miner Res. 2009;24(11):1808-1818.
[4] HOLZER G, VON SKRBENSKY G, HOLZER LA, et al. Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res. 2009;24(3):468-474.
[5] MARTELLI S, GIORGI M, DALL’ A E, et al. Damage tolerance and toughness of elderly human femora. Acta Biomater. 2021;123:167-177.
[6] OFTADEH R, ENTEZARI V, SPÖRRI G, et al. Hierarchical analysis and multi-scale modelling of rat cortical and trabecular bone.J R Soc Interface. 2015;12(106):20150070.
[7] LIU P, LIANG X, LI Z, et al. Decoupled effects of bone mass, microarchitecture and tissue property on the mechanical deterioration of osteoporotic bones. Composites Part B-Engineering. 2019;177.
[8] KNOWLES NK, IPK, FERREIRA LM. The Effect of Material Heterogeneity, Element Type, and Down-Sampling on Trabecular Stiffness in Micro Finite Element Models.Ann Biomed Eng. 2019;47(2):615-623.
[9] SABET FA, JIN O, KORIC S, et al. Nonlinear micro-CT based FE modeling of trabecular bone-Sensitivity of apparent response to tissue constitutive law and bone volume fraction. Int J Numer Method Biomed Eng. 2018;34(4):e2941.
[10] RIEGER R, AUREGAN JC, HOC T. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level. Morphologie. 2018;102(336):12-20.
[11] CORY E, NAZARIAN A, ENTEZARI V, et al. Compressive axial mechanical properties of rat bone as functions of bone volume fraction, apparent density and micro-ct based mineral density. J Biomech. 2010;43(5): 953-960.
[12] YANG H, NAWATHE S, FIELDS AJ, et al. Micromechanics of the human vertebral body for forward flexion. J Biomech. 2012;45(12):2142-2148.
[13] YANG H, XU X, BULLOCK W, et al. Adaptive changes in micromechanical environments of cancellous and cortical bone in response to in vivo loading and disuse. J Biomech. 2019;89:85-94.
[14] DEPALLE B, CHAPURLAT R, WALTER-LE-BERRE H, et al. Finite element dependence of stress evaluation for human trabecular bone. J Mech Behav Biomed Mater. 2013;18:200-212.
[15] 吴宇航,郑利钦,张彪,等. 去势大鼠骨质疏松性骨小梁的压缩断裂仿真[J]. 中国组织工程研究,2020,24(15):2387-2392.
[16] NIKODEM A. Correlations between structural and mechanical properties of human trabecular femur bone. Acta Bioeng Biomech. 2012;14(2):37-46.
[17] GOULET RW, GOLDSTEIN SA, CIARELLI MJ, et al. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech. 1994;27(4):375-389.
[18] MAQUER G, MUSY SN, WANDEL J, et al. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables.J Bone Miner Res. 2015;30(6): 1000-1008.
[19] DING M, OVERGAARD S. 3-D microarchitectural properties and rod- and plate-like trabecular morphometric properties of femur head cancellous bones in patients with rheumatoid arthritis, osteoarthritis, and osteoporosis. J Orthop Translat. 2021;28:159-168.
[20] VAN RIETBERGEN B, ODGAARD A, KABEL J, et al. Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. J Orthop Res. 1998;16(1):23-28.
[21] BARAK MM, BLACK MA. A novel use of 3D printing model demonstrates the effects of deteriorated trabecular bone structure on bone stiffness and strength. J Mech Behav Biomed Mater. 2018;78:455-464.
[22] WANG J, ZHOU B, LIU XS, et al. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone. Bone. 2015;72:71-80.
[23] 秦国宁,邢飞,卢斌,等. 新鲜正常股骨头组织力学加载下内部空间结构变化[J]. 医用生物力学,2021,36(S1):41.
[24] 赵森,高颜,李太阳,等. 动态加载作用下大鼠尾椎骨应力分布的数值模拟研究[J]. 医用生物力学,2021,36(S1):227.
[25] HAMBLI R. Micro-CT finite element model and experimental validation of trabecular bone damage and fracture. Bone. 2013;56(2):363-374.
[26] KAZUYUKI K, TAKUAKI Y, GORO M, et al. The role of sclerotic changes in the starting mechanisms of collapse: A histomorphometric and FEM study on the femoral head of osteonecrosis. Bone. 2015;81:644-648.
[27] GOFF MG, LAMBERS FM, SORNA RM, et al. Finite element models predict the location of microdamage in cancellous bone following uniaxial loading. J Biomech. 2015;48(15):4142-4148.
[28] 张长灏,孟昊业,汪爱媛,等. 股骨头坏死中松质骨微观力学特性的演变规律[J]. 北京生物医学工程,2021,40(2):123-129.
[29] VIVEEN J, PERILLI E, ZAHROONI S, et al. Three-dimensional cortical and trabecular bone microstructure of the proximal ulna. Arch Orthop Trauma Surg. 2021 Jul 5. doi: 10.1007/s00402-021-04023-7.
[30] ZHOU B, LIU X S, WANG J, et al. Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS). J Biomech. 2014;47(3):702-708.
[31] STEIN E M, KEPLEY A, WALKER M, et al. Skeletal structure in postmenopausal women with osteopenia and fractures is characterized by abnormal trabecular plates and cortical thinning. J Bone Miner Res. 2014,29(5):1101-1109.
[32] WANG J, ZHOU B, PARKINSON I, et al. Trabecular Plate Loss and Deteriorating Elastic Modulus of Femoral Trabecular Bone in Intertrochanteric Hip Fractures. Bone Res. 2013;1(4):346-354.
[33] GREENWOOD C, CLEMENT J, DICKEN A, et al. Age-Related Changes in Femoral Head Trabecular Microarchitecture. Aging Dis. 2018;9(6):976-987.
[34] SALMON PL, OHLSSON C, SHEFELBINE SJ, et al. Structure Model Index Does Not Measure Rods and Plates in Trabecular Bone. Front Endocrinol (Lausanne). 2015;6:162.
[35] FELDER AA, MONZEM S, DE SOUZA R, et al. The plate-to-rod transition in trabecular bone loss is elusive. R Soc Open Sci. 2021;8(6):201401.
|