中国组织工程研究 ›› 2023, Vol. 27 ›› Issue (22): 3481-3485.doi: 10.12307/2023.347

• 骨与关节生物力学 bone and joint biomechanics • 上一篇    下一篇

动力交叉螺钉应用于不稳定型股骨颈骨折的生物力学分析

顾  叶1,王秋霏1,方  涛1,彭育沁1,薛  峰1,耿德春2,徐耀增2,张  文3   

  1. 1苏州大学附属常熟医院常熟市第一人民医院骨科,江苏省常熟市   215500;2苏州大学附属第一医院骨科,江苏省苏州市   215006;3苏州大学骨科研究所,江苏省苏州市   215006
  • 收稿日期:2022-04-18 接受日期:2022-06-06 出版日期:2023-08-08 发布日期:2022-11-02
  • 通讯作者: 张文,硕士,高级实验师,苏州大学骨科研究所,江苏省苏州市 215006
  • 作者简介:顾叶,男,1981年生,江苏省常熟市人,汉族,2018年苏州大学毕业,博士,副主任医师,主要从事创伤外科的研究。
  • 基金资助:
    江苏省重点研发(社会发展)项目(BE2021673),项目负责人:顾叶;江苏省重点研发(社会发展)项目(BE2020666);苏州市科技发展计划项目(SYSD2020013),项目负责人:顾叶;苏州市临床重点病种诊疗项目(LCZX201824),项目负责人:薛峰,顾叶;常熟市卫健委科技计划项目(csws201907),项目负责人:顾叶;常熟科技发展计划项目(CS202119),项目负责人:王秋霏,顾叶;常熟科技发展计划项目(CS201817),项目负责人:顾叶

Biomechanical analysis of femoral neck system in unstable femoral neck fractures

Gu Ye1,  Wang Qiufei1,  Fang Tao1, Peng Yuqin1, Xue Feng1, Geng Dechun2, Xu Yaozeng2, Zhang Wen3   

  1. 1Department of Orthopedics, Changshu Hospital Affiliated to Suzhou University, Changshu No.1 People’s Hospital, Changshu 215500, Jiangsu Province, China; 2Department of Orthopedics, First Affiliated Hospital of Suzhou University, Suzhou 215006, Jiangsu Province, China; 3Institute of Orthopedics, Suzhou University, Suzhou 215006, Jiangsu Province, China 
  • Received:2022-04-18 Accepted:2022-06-06 Online:2023-08-08 Published:2022-11-02
  • Contact: Zhang Wen, Master, Senior experimentalist, Institute of Orthopedics, Suzhou University, Suzhou 215006, Jiangsu Province, China
  • About author:Gu Ye, MD, Associate chief physician, Department of Orthopedics, Changshu Hospital Affiliated to Suzhou University, Changshu No.1 People’s Hospital, Changshu 215500, Jiangsu Province, China
  • Supported by:
    the Key Research and Development (Social Development) Project of Jiangsu Province, No. BE2021673 (to GY); Key Research and Development (Social Development) Project of Jiangsu Province, No. BE2022666; Suzhou Science and Technology Development Plan Project, No. SYSD2020013 (to GY); Suzhou Municipal Clinical Key Disease Diagnosis and Treatment Project, No. LCZX201824 (to XF, GY); Changshu Municipal Health Commission Science and Technology Project, No. csws201907 (to GY); Changshu Science and Technology Development Plan Project, No. CS202119 (to WQF, GY); Changshu Science and Technology Development Plan Project, No. CS201817 (to GY) 

摘要:


文题释义:

三维有限元分析:有限元方法可以对模型施加不同的负荷、材料属性、边界条件等并进行分析, 解决了传统的骨科力学研究的有创性、环境影响很大、费用高、耗时长的问题,成为研究骨科力学分析的重要工具。
股骨颈动力交叉钉系统(Femoral Neck System,FNS):一种治疗股骨颈骨折较新的内固定器械,由螺栓、板块、防旋螺钉和锁钉螺钉4部件组成,具有防旋、防滑、抗剪切、实现骨折断端加压的作用。

背景:股骨颈动力交叉钉系统是一种新型的不稳定型股骨颈骨折固定器械。
目的:通过有限元方法对比分析3种内固定应用于Pauwels Ⅲ不稳定型股骨颈骨折的力学稳定性。
方法:在已验证有效性的股骨有限元模型基础上(生理组),对模型进行必要的切割,造模成股骨颈Pauwels Ⅲ(70°)不稳定型骨折,模拟临床手术植入不同内固定模型,分别建立动力交叉螺钉固定(模型A),倒三角空心螺钉固定(模型B)和菱形4枚空心螺钉固定(模型C)。对3组模型约束其股骨远端下所有节点,在股骨头上施加700,1 400和2 100 N的压缩载荷,通过计算分析,观察各组模型的Von Mises应力分布和变形量,比较各组模型之间的力学稳定性。 
结果与结论:①3组内固定模型在各种载荷作用下的最大变形量都发生在股骨头,压缩2 100 N时模型A组的变形2.06 mm小于生理组2.17 mm,模型B和模型C的变形均高于生理组模型分别为2.39 mm和2.33 mm;②各种载荷作用下,模型A组的应力最小,2 100 N作用时,模型A应力峰值为297.31 MPa,分布于防旋螺钉和锁紧螺钉连接的位置;而模型B 的应力峰值高达543.18 MPa,分布于倒三角第三个螺钉的骨折缝位置;模型C的变形量和应力介于模型A和模型B中间,最大应力峰值分布于最下面一个空心钉骨折缝位置,2 100 N时达315.61 MPa;③3组模型的变形分析和应力分析,均呈现模型A < 模型C < 模型B;④结果说明,股骨颈动力交叉钉系统对股骨颈固定的力学稳定性优于3枚和4枚空心螺钉,能有效预防股骨颈短缩,是不稳定型股骨颈骨折值得推荐的内固定方式。
https://orcid.org/0000-0003-0652-2996(顾叶) 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 动力交叉螺钉, 有限元分析, 股骨颈不稳定型骨折, 股骨颈骨折, 内固定

Abstract: BACKGROUND: The femoral neck system is a novel fixation device for unstable femoral neck fractures.
OBJECTIVE: To compare and analyze the mechanical stability of three kinds of internal fixation in Pauwels III unstable femoral neck fractures by finite element method. 
METHODS: On the basis of the validated femoral finite element model (intact group), the model was cut to make a Pauwels III 70° unstable fracture of the femoral neck. Different internal fixation models were implanted to simulate clinical surgery. This study established femoral neck system fixation (model A), inverted triangular cannulated screw fixation (model B) and 4 diamond-shaped cannulated screw fixation (model C). All the nodes under the distal end of the femur were restrained for the three groups of models, and 700 N, 1 400 N and 2 100 N compressive loads were applied to the femoral head. Through calculation and analysis, the Von Mises stress distribution and deformation of each group of models were observed, and the mechanical stability of each group of models was compared. 
RESULTS AND CONCLUSION: (1) The maximum deformation of the three groups of models under various loads occurred in the femoral head. When compressed for 2 100 N, the deformation of model A was 2.06 mm less than that of intact group 2.17 mm, while the deformations of model B and model C were both higher than that of intact group, with the distributions of 2.39 mm and 2.33 mm. (2) Under various loads, the stress in model A group was also the smallest. Under 2 100 N, the stress peak in model A was 297.31 MPa, distributed at the joint position of anti-rotation screw and locking screw, while the stress peak in model B was 543.18 MPa, distributed at the fracture joint position of the third screw in the inverted triangle. However, the deformation and stress of model C were intermediate between model A and model B, and the maximum stress peak value was distributed at the bottom hollow of the cannulated screw fracture, reaching 315.61 MPa at 2 100 N. (3) The compressive stiffness and stress analysis of models of the three groups showed that model A < model C < model B. (4) It is concluded that the mechanical stability of femoral neck system for femoral neck fracture is better than that of three and four cannulated screws fixation, and it can effectively prevent femoral neck shortening. Femoral neck system is a recommended internal fixation method for unstable femoral neck fractures.

Key words: femoral neck system, finite element analysis, femoral neck unstable fracture, femoral neck fracture, internal fixation

中图分类号: