中国组织工程研究 ›› 2023, Vol. 27 ›› Issue (13): 1975-1980.doi: 10.12307/2023.272

• 骨与关节生物力学 bone and joint biomechanics • 上一篇    下一篇

侧前方入路一体式可撑开可复位椎间融合器的生物力学特征

张  泓1,2,吴爱悯3,4,李俊伟1,2,蔡鑫义1,2,任亚楠1,2,都承斐1,2   

  1. 天津理工大学,1天津市先进机电系统设计与智能控制重点实验室,2机电工程国家级实验教学示范中心,天津市   300384;3温州医科大学附属第二医院育英儿童医院骨科医院脊柱外科,浙江省温州市   325088;4浙江省骨科学重点实验室,浙江省温州市   325088
  • 收稿日期:2022-03-03 接受日期:2022-05-06 出版日期:2023-05-08 发布日期:2022-08-11
  • 通讯作者: 都承斐,博士,副教授,天津市先进机电系统设计与智能控制重点实验室,天津市 300384;机电工程国家级实验教学示范中心(天津理工大学),天津市 300384
  • 作者简介:张泓,男,1998年生,黑龙江省鸡西市人,汉族,天津理工大学在读硕士,主要从事骨骼数值仿真及假体植入物的生物力学研究。
  • 基金资助:
    浙江省卫生健康科技计划(2022PY071),项目负责人:吴爱悯;温州市领军型人才创新创业项目(RX2016004),项目负责人:吴爱悯

Biomechanical characteristics of integrated expandable repositionable cage through lateral anterior approach

Zhang Hong1, 2, Wu Aimin3, 4, Li Junwei1, 2, Cai Xinyi1, 2, Ren Yanan1, 2, Du Chengfei1, 2   

  1. 1Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology; 2National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology; 3Department of Spine Surgery, Orthopaedic Hospital, Yuying Children's Hospital, Second Affiliated Hospital of Wenzhou Medical University; 4Zhejiang Provincial Key Laboratory of Orthopaedic Science
  • Received:2022-03-03 Accepted:2022-05-06 Online:2023-05-08 Published:2022-08-11
  • Contact: Du Chengfei, MD, Associate professor, Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
  • About author:Zhang Hong, Master candidate, Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
  • Supported by:
    Zhejiang Provincial Health Science and Technology Program, No. 2022PY071 (to WAM); Wenzhou Leading Talents Innovation and Entrepreneurship Project, No. RX2016004 (to WAM)

摘要:

文题释义:
侧前方入路椎间融合术:又称斜外侧椎间融合术(oblique lumbar interbody fusion,OLIF),作为一项用于治疗腰椎退行性疾病的微创手术,其优点为从腹腔的侧前方入路,既不损伤椎管又不破坏后部结构,很大程度降低了静脉丛出血和神经损伤的风险。
一体式可撑开可复位椎间融合器:该椎间融合器操作方便,给患者造成的伤痛小,更为安全可靠;其撑开功能可以解决腰椎间间距问题,复位功能可以解决腰椎前后滑移导致的移位问题。

背景:体外实验证实,采用的一体式椎间融合器虽可以从侧方置入,但其置入体内后不具有调节椎间融合器高度的能力和调节腰椎滑移的复位功能。基于以上原因,课题组设计了一种新型的侧前方入路一体式可撑开可复位椎间融合器(OLIF+IERC),并不断深入研究其生物力学性能。
目的:探究OLIF+IERC模型,相比于正常腰椎有限元模型、传统的单纯斜前方腰椎椎间融合术(oblique lumber interbody fusion,OLIF)无螺钉固定系统(Stand-alone OLIF)模型、OLIF联合后路双侧椎弓根钉棒固定(OLIF+BPS)模型的生物力学性能差异。
方法:对已建立并验证有效的正常模型(L3-S1)进行适当的修改,建立3种OLIF手术有限元模型:Stand-alone OLIF模型、OLIF+BPS模型及OLIF+IERC模型。通过对各模型施加500 N的随动载荷和不同方向上(前屈、后伸、侧弯、轴向旋转)7.5 N·m的力矩载荷,比较不同模型的各生物力学指标差异。
结果与结论:①对于L4-L5的运动范围、融合器上最大应力及最大终板应力:OLIF+IERC模型在轴向旋转时低于其他手术模型,Stand-alone OLIF模型在各运动姿态下均最高,OLIF+BPS模型在前屈、后伸及侧弯时最低;②综合分析得出:OLIF+IERC模型的生物力学稳定性、抵抗椎间融合器沉降和椎间盘高度降低的能力,在各运动姿态下均优于Stand-alone OLIF模型,在轴向旋转的运动姿态下优于OLIF+BPS模型;③研究建议:腰椎退行性患者在今后进行手术治疗时,可以考虑采用OLIF联合一体式可伸缩可复位融合器固定的手术方式。该研究为腰椎退行性疾病的治疗提供了有价值的参考。

https://orcid.org/0000-0003-2253-3716 (张泓) 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 侧前方入路椎间融合术, 一体式可撑开可复位融合器, 腰椎滑移, 生物力学, 有限元

Abstract: BACKGROUND: In vitro experiments have confirmed that although the integrated interbody cage can be implanted from the side, it does not have the ability to adjust the height of the intervertebral cage and adjust the reduction function of lumbar spondylolisthesis after implantation. Therefore, the present study designed a new lumbar surgical procedure: oblique lumbar interbody fusion with an integrated expandable repositionable cage fixation (OLIF+IERC), and studied the biomechanical performance of OLIF+IERC.  
OBJECTIVE: To explore the biomechanical performance differences of the OLIF+IERC surgical model in this study, compared with the normal lumbar spine finite element model, OLIF stand-alone without fixation system (stand-alone OLIF) model, and OLIF with posterior bilateral pedicle screws fixation (OLIF+BPS) model.
METHODS:  The established and validated normal model (L3-S1) was suitably modified to establish three kinds of OLIF surgical models: stand-alone OLIF, OLIF+BPS, and OLIF+IERC designed in this study. By applying a 500 N follower load and a moment load of 7.5 N·m in different directions (flexion, extension, lateral bending, and axial rotation) to each model, the various biomechanical indicators of the different models were compared.  
RESULTS AND CONCLUSION: (1) For range of motion, maximum cage stress, and maximum endplate stress at L4-L5, OLIF+IERC was lower than other surgical models in axial rotation; stand-alone OLIF was highest in all motion postures; OLIF+BPS was lowest in flexion, extension, and lateral bending. (2) Taken together, the biomechanical stability, resistance to cage subsidence, and disc height reduction of OLIF+IERC were superior to stand-alone OLIF in all motion postures and superior to OLIF+BPS in motion posture of axial rotation. (3) This study suggests that OLIF+IERC may be considered as a surgical procedure for future surgical treatment of patients with degenerative disease of the lumbar spine. This study provides a valuable reference for the treatment of lumbar degenerative diseases.

Key words: oblique lumbar interbody fusion, integrated expandable repositionable cage, lumbar slippage, biomechanics, finite element

中图分类号: