中国组织工程研究 ›› 2022, Vol. 26 ›› Issue (21): 3421-3428.doi: 10.12307/2022.654

• 生物材料综述 biomaterial review • 上一篇    下一篇

与骨缺损区域骨组织再生相匹配的新型硅酸钙(基)支架的性能优化

张春雨1,胡宝阳2,冯  瑶1,张万芬1,孙磊叶1,阳  燕1,3   

  1. 1中南大学湘雅口腔医学院,湖南省长沙市  410000;2中南大学湘雅医学院,湖南省长沙市  410000;3中南大学湘雅口腔医院修复科,湖南省长沙市  410000
  • 收稿日期:2021-06-01 接受日期:2021-06-25 出版日期:2022-07-28 发布日期:2022-01-28
  • 通讯作者: 阳燕,博士,博士后,讲师,中南大学湘雅口腔医院修复科,湖南省长沙市 410000
  • 作者简介:张春雨,女,1998年生,重庆市人,汉族,中南大学湘雅口腔医学院在读硕士,主要从事生物相容性骨修复材料研究。
  • 基金资助:
    湖南省大学生创新训练项目项目(S2020105330518),项目负责人:张春雨;中南大学教育教学改革研究项目(2020jy137-2),项目负责人:阳燕

Performance optimization of a new type of calcium silicate (based) scaffold matched with bone tissue regeneration in the bone defect area

Zhang Chunyu1, Hu Baoyang2, Feng Yao1, Zhang Wanfen1, Sun Leiye1, Yang Yan1, 3   

  1. 1Xiangya School of Stomatology, Central South University, Changsha 410000, Hunan Province, China; 2Xiangya School of Medicine, Central South University, Changsha 410000, Hunan Province, China; 3Department of Prosthodontics, Xiangya Stomatological Hospital, Central South University, Changsha 410000, Hunan Province, China
  • Received:2021-06-01 Accepted:2021-06-25 Online:2022-07-28 Published:2022-01-28
  • Contact: Yang Yan, MD, Lecturer, Xiangya School of Stomatology, Central South University, Changsha 410000, Hunan Province, China; Department of Prosthodontics, Xiangya Stomatological Hospital, Central South University, Changsha 410000, Hunan Province, China
  • About author:Zhang Chunyu, Master candidate, Xiangya School of Stomatology, Central South University, Changsha 410000, Hunan Province, China
  • Supported by:
    the Hunan University Student Innovation Training Project, No. S2020105330518 (to ZCY); Education and Teaching Reform Research Project of Central South University, No. 2020jy137-2 (to YY)

摘要:

文题释义:
硅酸钙支架:是一种具有良好的生物相容性、成骨诱导活性和成血管诱导活性的可降解细胞支架,有一定的机械力学刚度,可为细胞提供黏附、生长、增殖的三维空间,有利于支架内的细胞获得足够的营养物质,进行有效的气体交换,并及时排除代谢废物,是骨修复领域很有潜力的前沿研究材料。但是由于其成骨效应不稳定、降解速率太快以及力学性能差的原因,目前尚未在临床上广泛使用。
硅酸钙(基)支架:是一种以硅酸钙为基材的生物复合支架,通过复合各种材料如金属离子、生物活性因子、无机分子及有机分子等,可在单相硅酸钙支架的基础上改善原有生物支架的性能或增加新的性能。

背景:硅酸钙支架因为具有良好的生物相容性、骨诱导性、骨传导活性及具备一定的生物降解性而备受关注,但由于硅酸钙成骨效应不稳定、降解速率快以及力学性能差的原因,目前尚未应用于临床骨缺损修复中。
目的:详细回顾近年来优化硅酸钙支架性能的研究进展,总结单相硅酸钙支架在骨缺损修复应用中的潜力和不足,探索其用于临床骨缺损修复的可能性。
方法:通过中国知网、万方、PubMed、Elsevier及Web of Science数据库,以“3D print,calcium silicate,osteogenesis,composite modification,angiogenesis,stress distribution,bone defect repairing”为英文检索词,“3D打印、硅酸钙、成骨诱导、复合改性、成血管诱导、应力分布、骨缺损修复”为中文检索词,检索近20年的相关文献,通过纳入、排除标准筛选,最终纳入文献共83篇,基于终筛文献对骨组织工程中硅酸钙(基)支架性能优化的研究进展及挑战进行系统全面的分析阐述。
结果与结论:①硅酸钙材料具有一定的促骨髓间充质干细胞成骨成血管定向分化的潜力,一定的可降解性,游离的Ca2+和Si4+可诱导羟基磷灰石沉积、促进Ⅰ型胶原分泌以及成骨细胞分化,进而增加骨密度,促进矿化环节,目前已成为骨修复领域最有潜力的前沿研究方向。②然而单相硅酸钙支架在机械性能、生物活性和降解速率上难以完全适配骨缺损区域的骨组织再生,故尚未在临床上广泛使用。③目前,针对硅酸钙(基)支架性能优化的研究虽较丰富,但是缺乏系统的整理归纳,文章将硅酸钙(基)支架的性能优化手段归纳为支架结构的优化和支架材料组成的优化共2大类。④硅酸钙(基)支架的结构优化以3D打印技术效果最为突出,3D打印技术通过精确调控支架的孔隙率和孔径大小,可以使硅酸钙(基)支架拥有更优的应力分布模式和成骨成血管效应;⑤硅酸钙支架材料组成的优化是借助复合材料(包括无机离子、分子、有机分子和高分子聚合物等)对支架生物化学结构的多方面影响,以达到改善硅酸钙(基)植入支架机械力学性能及成骨成血管生物诱导性能的目的。⑥因此,综合利用3D打印技术和材料复合改性手段是目前硅酸钙支架优化研究的新思路,基于单相硅酸钙支架在骨缺损修复应用中存在的弊端,通过对硅酸钙(基)支架结构、组成、表面情况等多方面进行优化改性,以期在未来探索出一种能有效促进成骨分化、骨矿化、机械力学性能和降解速率能够与骨缺损区域骨组织再生相匹配的新型硅酸钙(基)组织工程骨支架。

https://orcid.org/0000-0001-8852-2791 (阳燕) 

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性;组织工程

关键词: 硅酸钙, 骨缺损修复, 3D打印, 复合改性, 应力分布, 成骨诱导, 成血管诱导, 支架材料

Abstract: BACKGROUND: Calcium silicate scaffolds have attracted more and more attention, because of their high biocompatibility, osteoinduction and osteoconduction activities, and a degree of biodegradation. However, due to the unstable osteogenic effect, fast degradation rate and poor mechanical properties of calcium silicate, it has not yet been used in clinical bone defect repair. 
OBJECTIVE: To review research progress in optimizing the performance of calcium silicate scaffolds, summarize the potential and insufficiency of the single-phase calcium silicate scaffolds applied in bone defect repair, and to explore the possibility of its use in clinical bone defect repair.
METHODS: The search was performed on CNKI, Wanfang, PubMed, Elsevier, and Web of Science databases. With the keywords of “3D print, calcium silicate, osteogenesis, composite modification, angiogenesis, stress distribution, bone defect repairing” in Chinese and English, related articles in recent 20 years were retrieved. According to the inclusion and exclusion criteria, 83 papers were finally reviewed. Based on the final screening articles, the research progress and challenges of the performance optimization of calcium silicate based scaffolds in bone tissue engineering were systematically and comprehensively analyzed. 
RESULTS AND CONCLUSION: (1) Calcium silicate materials have a certain potential to promote osteogenic and angiogenic differentiation of bone marrow mesenchymal stem cells, and have certain degradability. Free Ca2+ and Si4+ can induce hydroxyapatite deposition, promote collagen- I secretion and differentiation of osteoblasts, thereby increasing bone mineral density and promoting mineralization. Now, it has become one of the most promising frontier research direction in the field of bone repair. (2) However, single-phase calcium silicate scaffolds are not fully suitable for bone tissue regeneration in bone defect area in terms of mechanical properties, biological activity, and degradation rate, so it has not been widely used in clinical practice. (3) At present, there are abundant studies on the performance optimization of calcium silicate scaffolds, but there is a lack of systematic summary. In this study, through a large number of literature summary and data extraction, the performance optimization methods of calcium silicate scaffolds are classified into two categories, namely, the optimization of scaffold structure and the optimization of scaffold material composition. (4) 3D printing technology has a prominent effect on the structure optimization of calcium silicate scaffolds. By accurately regulating the porosity and pore size of the scaffolds, 3D printing technology can make the calcium silicate scaffolds have better stress distribution mode and osteogenic and angiogenic effect. (5) The optimization of the composition of calcium silicate scaffolds is based on the influence of composite materials (including inorganic ions, molecules, organic molecules, and high polymer) on the biochemical structure of scaffolds in many aspects, so as to improve mechanical properties of calcium silicate scaffolds as well as the bioinduction properties of osteogenesis and angiogenesis. (6) In conclusion, the comprehensive use of 3D printing technology and composite modification of materials is a new idea for the studies of calcium silicate scaffolds in the field of bone repair. Based on the disadvantages of single-phase calcium silicate scaffolds in the application of bone defect repair, by optimizing and modifying the structure, composition and surface conditions of the calcium silicate scaffolds, a new type of calcium silicate-based tissue engineered bone scaffold, which can effectively promote osteogenic differentiation and bone mineralization, and whose mechanical properties and degradation rate could match the regeneration of bone tissue in bone defect area, will be explored. 

Key words: calcium silicate, bone defect repairing, 3D printing, composite modification, stress distribution, osteogenesis induction, angiogenesis induction, scaffolds

中图分类号: