中国组织工程研究 ›› 2022, Vol. 26 ›› Issue (34): 5448-5453.doi: 10.12307/2022.454

• 材料生物相容性 material biocompatibility • 上一篇    下一篇

注射用聚左旋乳酸微球体内可促胶原再生

张译心1,罗  倩2,梁瀚文2,陈建林2,赵  楠3,何  斌4   

  1. 1重庆电子工程职业学院智慧健康学院,重庆市  401331;2成都医学院检验医学院,四川省成都市  610500;3普丽妍(南京)医疗科技有限公司,江苏省南京市  211500;4四川大学国家生物医学材料工程技术研究中心,四川省成都市  610064
  • 收稿日期:2021-03-25 接受日期:2021-05-26 出版日期:2022-12-08 发布日期:2022-04-15
  • 通讯作者: 陈建林,副教授,成都医学院检验医学院,四川省成都市 610500 何斌,研究员,四川大学国家生物医学材料工程技术研究中心,四川省成都市 610064
  • 作者简介:张译心,女,1990年生,四川省成都市人,博士,讲师,主要从事医用高分子材料及医疗器械的研究工作。
  • 基金资助:
    国家自然科学基金(51773130),项目负责人:何斌;四川省科技计划资助(2019JDRC0098),项目负责人:张译心;四川大学-企业横向合作项目(18H0350),项目负责人:何斌;四川省卫生和计划生育委员会科研课题(18PJ553),项目负责人:陈建林

In vivo neocollagenesis of injectable poly(L-lactic acid) microspheres

Zhang Yixin1, Luo Qian2, Liang Hanwen2, Chen Jianlin2, Zhao Nan3, He Bin4   

  1. 1School of Smart Health, Chongqing College of Electronic Engineering, Chongqing 401331, China; 2School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, Sichuan Province, China; 3Puliyan (Nanjin) Medical Technology Co., Ltd., Nanjing 211500, Jiangsu Province, China; 4National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan Province, China
  • Received:2021-03-25 Accepted:2021-05-26 Online:2022-12-08 Published:2022-04-15
  • Contact: Chen Jianlin, Associate professor, School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, Sichuan Province, China He Bin, Researcher, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan Province, China
  • About author:Zhang Yixin, PhD, Leturer, School of Smart Health, Chongqing College of Electronic Engineering, Chongqing 401331, China
  • Supported by:
    National Natural Science Foundation of China, No. 51773130 (to HB); Science and Technology Program Fund of Sichuan Province, No. 2019JDRC0098 (to ZYX); Sichuan University-Enterprise Horizontal Cooperation Project, No. 18H0350 (to HB); Scientific Research Project of Sichuan Provincial Health and Family Planning Commission, No. 18PJ553 (to CJL)

摘要:

文题释义:
微球:粒径在1-1 000 μm范围内的球形粒子。不同于胶束等自组装体系中粒径大小和形貌由材料的性质和自组装驱动力决定,微球的粒径和形貌可通过控制制备参数进行调控,以符合不同应用的需求。
胶原再生:胶原蛋白(简称胶原)是皮肤的重要组成成分,主要起支撑、弹性的作用。随着年龄增长或外界环境(紫外线)的影响,皮下软组织缺失而导致了皱纹、褶皱的产生。通过皮下注射聚左旋乳酸微球刺激机体产生异物反应,从而形成由胶原组成的纤维囊,以达到面部年轻化的目的。

背景:聚左旋乳酸皮下填充剂是美国FDA批准可作为修复皮下软组织胶原流失的医美产品,由于其形态为不规则颗粒,容易产生过度炎症反应。
目的:观察辐照条件对聚左旋乳酸微球分子质量和粒径形貌的影响,以及聚左旋乳酸微球皮下填充剂植入兔皮下的异物反应程度和刺激胶原再生情况。
方法:采用乳液-溶剂挥发法制备聚左旋乳酸微球,参考Sculptra®的配方配制成可注射皮下填充剂,分别经25,50 kGy辐照灭菌,分析辐照灭菌对微球分子质量和粒径形貌的影响。采用MTT法检测不同质量浓度(50,100,250,500 mg/L,以微球的浓度计)可注射皮下填充剂对小鼠成纤维细胞增殖的影响。将25 kGy辐照灭菌的可注射皮下填充剂(实验组)、生理盐水(对照组)分别注射至兔背部皮下,于设定的时间点进行注射部位背部组织苏木精-伊红、马松三色染色及CD68、Ⅰ型胶原和Ⅲ型胶原免疫荧光染色。
结果与结论:①随着辐照剂量的增加,微球的黏度、黏均分子质量和数均分子质量降低明显,但辐照灭菌并未导致微球的粒径和形貌发生明显改变。②MTT检测结果显示,当填充剂的质量浓度低于250 mg/L时细胞存活率均>90%,即使材料质量浓度高达500 mg/L时细胞存活率也仍高于80%,并且长时间的孵育(72 h)也并未产生显著的细胞毒性。③动物实验苏木精-伊红染色与CD68免疫荧光染色显示,填充剂植入后的第0.5-4个月只引起轻微炎性反应,植入后第6个月时炎性反应程度达到最高,且部分微球表面出现孔洞结构或不规则形状;植入后第9个月微球完全降解。④动物实验马松三色染色与Ⅰ型胶原、Ⅲ型胶原免疫荧光染色显示,植入后第4个月,微球周围主要为Ⅰ型胶原,外围主要以Ⅲ型胶原为主;植入后第6个月,微球附近的I型胶原增多,外围的Ⅲ型胶原增多;植入后第9个月,纤维包囊内部主要以Ⅰ型胶原为主,外围则Ⅰ型胶原与Ⅲ型胶原的比例接近均等。⑤结果表明,可注射聚左旋乳酸微球填充剂具有刺激胶原再生的效果,还可降低炎性反应程度。

https://orcid.org/0000-0003-2414-4730 (张译心)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性;组织工程

关键词: 聚左旋乳酸, 高分子微球, 皮下填充剂, 炎性反应, 胶原再生, Ⅰ型胶原, Ⅲ型胶原, 体内降解

Abstract: BACKGROUND: Poly(L-lactic acid) (PLLA) microparticle (Sculptra®) has been approved by FDA as the dermal filler to regenerate collagen for anti-aging purpose. Because of its irregular particle shape, it is prone to excessive inflammation.
OBJECTIVE: To investigate the effects of irradiation on the molecular weight, size and morphology of the poly(L-lactic acid) microspheres, as well as the foreign body reaction and the neocollagenesis stimulation of the poly(L-lactic acid) microspheres dermal filler implanted subcutaneously into back of rabbits.
METHODS: Microspheres were prepared by the emulsion-solvent evaporation method and utilized as the dermal filler with the same Sculptra’®s formula. The filler was sterilized by irradiation at 25 and 50 kGy, separately and the molecular weight, size and morphology of the microspheres were analyzed. The MTT assay was used to detect the effects of the microspheres at different concentrations (50, 100, 250, and 500 mg/L calculated by the concentration of microspheres) on the proliferation of mouse fibroblasts. The 25 kGy irradiated dermal filler (experimental group) and saline (control group) were injected into the back of the rabbit subcutaneously. Hematoxylin-eosin staining, Masson staining, and immunofluorescence staining of CD68, type I collagen and type III collagen were performed on the back tissue of the injection site at the set time points. 
RESULTS AND CONCLUSION: (1) With the increase of the radiation dose, the viscosity, viscosity-average molecular weight and number-average molecular weight of the microspheres decreased significantly, but the irradiation sterilization did not cause significant changes in the particle size and morphology of the microspheres. (2) MTT assay results demonstrated that when the mass concentration of the filler was lower than 250 mg/L, the cell survival rate was all >90%. Even when the material mass concentration reached the highest level 500 mg/L, the cell survival rate was still higher than 80%. Incubation for 72 hours also did not produce significant cytotoxicity. (3) In animal experiments, hematoxylin-eosin staining and CD68 immunofluorescence staining revealed that the filler caused slight inflammatory response from 0.5 to 4 months after implantation, and the inflammatory response reached the highest level at 6 months after implantation. Some microspheres were degraded to irregular shape or with pores on the surface, and the microspheres were degraded completely at 9 months after implantation. (4) In animal experiments, Masson staining and immunofluorescence staining of type I collagen and type III collagen exhibited that at 4 months after implantation, type I collagen was mainly around the microspheres, and type III collagen was mainly at the periphery. At 6 months after implantation, type I collagen near the microspheres increased, and type III collagen at the periphery increased. At 9 months after implantation, the fibrous encapsulation was mainly composed of type I collagen, and the ratio of type I collagen to type III collagen was close to the same at the periphery. (5) The results indicate that injectable poly(L-lactic acid) microsphere filler can stimulate collagen regeneration and can also reduce the degree of inflammatory response. 

Key words: poly(L-lactic acid), polymeric microspheres, dermal filler, inflammatory response, neocollagenesis, type I collagen, type III collagen, in vivo degradation

中图分类号: