[1] Fotenos AF, Snyder AZ, Girton LE, et al. R. L. Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology.2005;64:1032-1039. [2] Irene Forcada, Maria Mur, Ester Mora, et al. The influence of cognitive reserve on psychosocial and neuropsychologicalfunctioning in bipolar disorder. Eur Neuropsychopharmacol. 2015;25(2):214-222.[3] Dustman RE, Emmerson RY, Shearer DE, et al. Physical activity, age and cognitive-neuropsychological function. J Aging Phys Act . 1994;2: 143-181.[4] Erickson KI, Hillman CH, Kramer AF, et al. Physical activity, brain, and cognition. Current Opinion in Behavioral Sciences, 2015;4: 27-32. [5] 王骏濠,蔡佳良.运动或身体活动介入对认知控制功能的影响[J].中华体育季刊,2010,24(4):70-81.[6] Douglas PK, Gutman B, Anderson A, et al. Hemispheric brain asymmetry differences in youths with attention-deficit hyperactivity disorder. Neuroimage Clin. 2018;18:744-752.[7] Davis SW, Dennis NA, Daselaar SM, et al. The posterior anterior shift in aging. Cerebral Cortex.2007;18: 1201-1209. [8] Lorenzo-López L, Amenedo E, Pascual-Marqui RD, et al. F. Neural correlates of age-related visual search decline: A combined ERP and sLORETA study. Neuroimage.2008;41: 511-524. [9] Li L, Gratton C, Fabiani M, et al. Age-related frontoparietal changes during the control of bottom-up and top-down attention: an ERP study. Neurobiol Aging. 2013;34(2):477-488. [10] 张育恺,吴聪义.急性健身运动对认知功能的影响事件相关电位的文献回顾[J].体育学报,2011;4(1):1-28.[11] Hillman CH, Kamijo K, Scudder MA, et al. review of chronic and acute physical activity participation on neuroelectric measures of brain health and cognition during childhood. Prev Med. 2011;52 Suppl 1:S21-S28. [12] Iso-Markku P, Waller K, Vuoksimaa E, et al. Objectively measured physicalactivity profile and cognition in Finnish elderly twins. Alzheimers Dement (N Y). 2018;4:263-271.[13] Polich J. Updating P300: An integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118(10):2128-2148. [14] Miyake A, Friedman NP, Emerson MJ, et al. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn Psychol. 2000; 41(1):49-100. [15] Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults a meta-analytic study. Psychol Sci. 2003;14(2): 125-130. [16] Prakash RS, Voss MW, Erickson KI, et al. Physical activity and cognitive vitality. Annu Rev Psychol. 2015;66:769-797[17] Nee DE, Wager TD, Jonides J, et al. Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci. 2007;7(1):1-17. [18] Raquel Monteiro, Marco Simões, João Andrade, et al. Processing of Facial Expressions in Autism: a Systematic Review of EEG/ERP Evidence. Rev J Autism Dev Disord. 2017;4:255-276.[19] Van Boxtel MP, Langerak K, Houx PJ, et al. Self-reported physical activity, subjective health, and cognitive performance in older adults. Exp Aging Res. 1996;22(4):363-379. [20] Reid-Arndt SA, Matsuda S, Cox CR. Tai Chi effects on neuropsychological, emotional, and physical functioning following cancer treatment: A pilot study. Complement Ther Clin Pract. 2012; 18(1):26-30.[21] Gajewski PD, Falkenstein M. Long-term habitual physical activity is associated with lower distractibility in a Stroop interference task in aging: Behavioral and ERP evidence. Brain Cogn. 2015;98: 87-101. [22] Pontifex MB, Hillman CH, Polich J. Age, physical fitness, and attention: P3a and P3b. Psychophysiology.2009;46: 379-387. [23] 郭世杰,赖韵如,杨子孟.中年及老年人不同休闲时间身体活动量效关系与中风发生率之关联[J].大专体育学刊, 2014,16(3):342-352.[24] 陈心怡,花茂棽,朱建军,等.以魏氏成人智力量表第三版四因素为基础的简短式测验组型[J].中华心理学刊,2008;50(1):91-109.[25] Kray J, Eppinger B, Mecklinger A. Age differences in attentional control: An event-related potential approach. Psychophysiology. 2005;42:407-416.[26] West R, Alain C. Age-related decline in inhibitory control contributes to the increased Stroop effect observed in older adults. Psychophysiology.2000; 37: 179-189. [27] Etnier JL, Chang YK. The effect of physical activity on executive function: A brief commentary on definitions, measurement issues, and the current state of the literature. J Sport Exerc Psychol. 2009; 31(4):469-483. [28] Salthouse TA. The processing-speed theory of adult age difference in cognitive. Psychology Reviewed.1996;103: 403-428. [29] Salthouse TA, Atkinson TM, Bersih DE. Executive function as a potential mediator of age-related cognitive decline in normal adults. J Exp Psychol Gen. 2003;132(4):566-594. [30] Mager R, Bullinger AH, Brand S, et al. Age-related changes in cognitive conflict processing: An event-related potential study. Neurobiol Aging. 2007;28(12):1925-1935. [31] Bérengère Staub, Nadège Doignon-Camus, José Eduardo Marques-Carneiro, et al. Age-related differences in the use of automatic and controlled processes in a situation of sustained attention. Neuropsychologia. 2015;75:607-616.[32] Cid-Fernández S, Lindín M, Díaz F. Information processing becomes slower and predominantly serial in aging: Characterization of response-related brain potentials in an auditory–visual distraction–attention task. Biol Psychol. 2016 Jan;113:12- 23.[33] Hillman CH, Kramer AF, Belopolsky AV, et al. A cross-sectional examination of age and physical activity on performance and event-related brain potentials in a task switching paradigm. Int J Psychophysiol. 2006;59(1):30-39. [34] Chang YK, Huang CJ, Chen KF, et al. Physical activity and working memory in healthy older adults: An ERP study. Psychophysiology. 2013;50(11):1174-1182.[35] Maillet D, Rajah MN. Age-related changes in the three-way correlation between anterior hippocampus volume, whole-brain patterns of encoding activity and subsequent context retrieval. Brain Res. 2011;1420:68-79.[36] Kang L, Zhao W, Zhang G, et al. Acetylated 8-oxoguanine DNA glycosylase 1 and its relationship with p300 and SIRT1 in lens epithelium cells from age-related cataract. Exp Eye Res. 2015; 135:102-108.中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程 |