中国组织工程研究 ›› 2020, Vol. 24 ›› Issue (28): 4540-4546.doi: 10.3969/j.issn.2095-4344.2296

• 复合支架材料 composite scaffold materials • 上一篇    下一篇

转化生长因子β3/聚乳酸-羟基乙酸微球对干细胞的调控

 12,李  12,高仓健12,付力伟12,田广招12,查康康12,孙志强12,李  2,郭维民2,眭  2,黄靖香2,刘舒云2卢世璧2,郭全义2   

  1. 1南开大学医学院,天津市  3000712解放军总医院骨科研究所,骨科再生医学北京市重点实验室,全军骨科战创伤重点实验室,北京市  100853

  • 收稿日期:2019-11-12 修回日期:2019-11-16 接受日期:2019-12-20 出版日期:2020-10-08 发布日期:2020-09-01
  • 通讯作者: 郭全义,教授,解放军总医院骨科研究所,骨科再生医学北京市重点实验室,全军骨科战创伤重点实验室,北京市100853
  • 作者简介:杨振,男,1993年生,河南省商丘市人,汉族,南开大学医学院在读硕士,主要从事软骨、半月板组织工程相关方向的研究。
  • 基金资助:
    国家重点研发计划课题(2019YFA0110600);国家自然科学基金(81772319)

Regulation of stem cells by transforming growth factor β3/polylactic acid-glycolic acid microspheres

Yang Zhen1,2, Li Hao1,2, Gao Cangjian1,2, Fu Liwei1,2, Tian Guangzhao1,2, Zha Kangkang1,2, Sun Zhiqiang1,2, Li Xu2, Guo Weimin2, Sui Xiang2, Huang Jingxiang2, Liu Shuyun2, Lu Shibi2, Guo Quanyi2    

  1. 1Medical College of Nankai University, Tianjin 300071, China; 2Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing 100853, China

  • Received:2019-11-12 Revised:2019-11-16 Accepted:2019-12-20 Online:2020-10-08 Published:2020-09-01
  • Contact: Guo Quanyi, Professor, Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing 100853, China
  • About author:Yang Zhen, Master candidate, Medical College of Nankai University, Tianjin 300071, China; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing 100853, China
  • Supported by:
    the National Key Research and Development Plan Project, No. 2019YFA0110600; the National Natural Science Foundation of China, No. 81772319 

摘要:

文题释义:

转化生长因子β3:是转化生长因子β超家族成员,在胚胎软骨形成的多个时期都是必不可少的软骨组织形成的关键调节因子,可以促进间充质干细胞迁移并诱导其向软骨组织分化与成熟,促进软骨缺损的愈合。

聚乳酸-羟基乙酸微球:属于食品药品监督管理局(Food and Drug AdministrationFDA)批准的可生物降解聚合物,具有可控的降解性和良好的生物相容性,被广泛应用于医药领域。由于其生物可降解性,聚乳酸-羟基乙酸微球微球被广泛应用于小分子药物、蛋白质和其他大分子药物的可控持续释放。

背景:转化生长因子β3/聚乳酸-羟基乙酸缓释微球系统可使药物在作用部位维持有效药物浓度,提高生长因子的利用率。

目的:优化转化生长因子β3/聚乳酸-羟基乙酸缓释微球制备工艺,探究其对脂肪间充质干细胞增殖和迁移的影响。

方法:采用乳化-溶剂挥发法制备转化生长因子β3/聚乳酸-羟基乙酸缓释微球,并对微球的形态、粒径大小、药物空间分布、包封率、载药量和缓释性能进行表征。将转化生长因子β3/聚乳酸-羟基乙酸缓释微球溶解于PBS中,于相应的时间点检测上清液中转化生长因子β3浓度,对应时间点扫描电镜观察微球形态。将脂肪间充质干细胞分6组培养,分别加入培养基(阴性对照)、含转化生长因子β3的培养基、含空白聚乳酸-羟基乙酸微球的培养基、含101001 000 g/L转化生长因子β3/聚乳酸-羟基乙酸微球的培养基,于对应的时间点CCK-8法检测增殖。将脂肪间充质干细胞分别与培养基(阴性对照)、含转化生长因子β3的培养基、含聚乳酸-羟基乙酸微球的培养基、含101001 000 g/L转化生长因子β3/聚乳酸-羟基乙酸微球的培养基以非接触方式共培养24 h,检测细胞迁移数量。

结果与结论:①转化生长因子β3/聚乳酸-羟基乙酸微球呈球形,表面光滑,无粘连,粒径均匀分布,微球直径2-50 μm,微球内的蛋白药物分布均匀,具有较高的包封率与载药量;②缓释微球具有良好的降解性能,体外可于6个月后完全降解;同时具有良好的缓释性能,体外可缓慢释放转化生长因子β3长达45 d;③空白微球及含转化生长因子β3的缓释微球对脂肪间充质干细胞增殖无影响;④空白微球对脂肪间充质干细胞的迁移无影响,转化生长因子β3及含转化生长因子β3的缓释微球可促进脂肪间充质干细胞的迁移,不同质量浓度缓释微球间的促进效果无差异;⑤结果表明,转化生长因子β3/聚乳酸-羟基乙酸缓释微球可在不影响脂肪间充质干细胞增殖的情况下促进其迁移。

ORCID: 0000-0002-2267-4589(杨振)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

关键词: 转化生长因子β3, 聚乳酸-羟基乙酸, 缓释微球, 兔脂肪间充质干细胞, 增殖, 迁移, 软骨损伤, 组织工程

Abstract:

BACKGROUND: Transforming growth factor β3/polylactic acid-glycolic acid (TGF-β3/PLGA) sustained-release microspheres can maintain the effective drug concentration at the site of action and provide the feasibility for efficient utilization of growth factors.

OBJECTIVE: To optimize the manufacturing process of TGF-β3/PLGA sustained-release microspheres, and investigate their effects on the proliferation and migration of rabbit adipose-derived mesenchymal stem cells (ADSCs).

METHODS: TGF-β3/PLGA sustained-release microspheres were prepared by emulsification-solvent evaporation method. The morphology, particle size, drug spatial distribution, encapsulation efficiency, drug loading, and sustained release properties of the microspheres were characterized. The TGF-β3/PLGA sustained-release microspheres were dissolved in phosphate buffered saline. The concentration of TGF-β3 in the supernatant was detected at the corresponding time points. The microsphere morphology was observed by scanning electron microscopy at the corresponding time point. Adipose-derived mesenchymal stem cells were divided into six groups and then cultured with single culture medium (negative control) or culture medium containing TGF-β3 or blank PLGA, or culture medium containing 10,100,1 000 g/L TGF-β3/PLGA microspheres. Cell proliferation was detected by CCK-8 assay at the corresponding time point. Cells in each group were cultured for 24 hours with corresponding medium in a non-contact manner. The number of migratory cells was counted.

RESULTS AND CONCLUSION: (1) TGF-β3/PLGA sustained-release microspheres were spherical with smooth surface, no adhesion, and evenly distributed particle size. The microspheres had a diameter of 2-50 μm, and the protein drugs in the microspheres were evenly distributed, with high encapsulation efficacy and encapsulation dose. (2) The TGF-β3/PLGA sustained-release microspheres had good degradation properties and were completely degraded after 6 months in vitro. At the same time, these microspheres had good sustained-release performance and released TGF-β3 slowly for 45 days in vitro. (3) Blank microspheres and the sustained-release microspheres containing TGF-β3 had no effect on the proliferation of adipose-derived mesenchymal stem cells. (4) Blank microspheres had no effect on the migration of adipose-derived mesenchymal stem cells, and the transforming growth factor 3 and the sustained-release microspheres containing TGF-β3 promoted the migration of adipose-derived mesenchymal stem cells. There was no significant difference in the migration promotion between different concentrations of TGF-β3. (5) These findings suggest that the TGF-β3/PLGA sustained-release microspheres can promote the migration of adipose-derived mesenchymal stem cells without affecting their proliferation.

Key words: transforming growth factor beta 3, polylactic acid-glycolic acid, sustained-release microspheres, rabbit adipose-derived mesenchymal stem cells, proliferation, migration, cartilage injury, tissue engineering

中图分类号: