Chinese Journal of Tissue Engineering Research ›› 2024, Vol. 28 ›› Issue (7): 985-992.doi: 10.12307/2024.109
Feng Ruiqin1, 2, 3, Han Na1, 2, 3, Zhang Meng1, 2, 3, Gu Xinyi1, 2, 3, Zhang Fengshi1, 2, 3
Received:
2023-02-01
Accepted:
2023-03-09
Online:
2024-03-08
Published:
2023-07-15
Contact:
Han Na, MD, Researcher, Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China; National Center for Trauma Medicine, Beijing 101100, China
About author:
Feng Ruiqin, Master candidate, Physician, Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China; National Center for Trauma Medicine, Beijing 101100, China
Supported by:
CLC Number:
Feng Ruiqin, Han Na, Zhang Meng, Gu Xinyi, Zhang Fengshi. Combination of 1% platelet-rich plasma and bone marrow mesenchymal stem cells improves the recovery of peripheral nerve injury[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 985-992.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.3 EVs-prp具有更强的施万细胞重编程刺激功能 施万细胞重编程的特点主要包括:①细胞增殖能力增强;②c-Jun表达上调,c-Jun是驱动施万细胞重编程最关键的转录因子[30-31];③髓鞘化相关基因表达下调;④某些特征性基因表达上调,如胶质细胞源性神经营养因子(glial cell line-derived neurotrophic factor,GDNF)、Olig1、Shh、Sox-2等;⑤获得极度拉长的双极梭形形态以便形成再生轨道,有助于后续引导轴突再生[20]。 对这些重编程特点的分析可以了解施万细胞的重编程状态。EdU细胞增殖实验结果见图4A,B。EVs-prp组EdU阳性细胞核比例显著高于PBS组和EVs-nor组(P < 0.01),且EVs-nor和PBS组之间没有显著差异,表明EVs-prp能够显著刺激施万细胞增殖。转录因子c-Jun的表达分析结果显示,EVs-prp能够刺激施万细胞 c-Jun表达,其基因和蛋白表达量显著高于PBS组(P < 0.05),同时基因表达量显著高于EVs-nor组(P < 0.05),见图4C,D。髓鞘化相关基因Krox20的 qPCR检测结果显示,与PBS组相比,EVs-nor和EVs-prp组Krox20表达均出现显著下调(EVs-nor,P < 0.05;EVs-prp,P < 0.01),EVs-nor和EVs-prp组之间无显著性差异;GDNF基因表达在EVs-prp组中上调,显著高于PBS组和EVs-nor组(PBS,P < 0.05;EVs-nor,P < 0.01),PBS组和EVs-nor组之间没有显著差异,见图4E。最后,施万细胞形态分析结果显示,EVs-prp组细胞的圆度显著低于PBS和EVs-nor组(PBS,P < 0.01;EVs-nor,P < 0.01),且细胞长度/√面积值显著高于PBS和EVs-nor组(PBS,P < 0.000 1;EVs-nor,P < 0.000 1),同时这2个值在PBS组和EVs-nor组之间没有显著差异,见图4F,G。这表明EVs-prp组细胞形态显著伸长。"
[1] LI R, LIU Z, PAN Y, et al. Peripheral nerve injuries treatment: a systematic review. Cell Biochem Biophys. 2014;68(3):449-454. [2] CARVALHO CR, REIS RL, OLIVEIRA JM. Fundamentals and Current Strategies for Peripheral Nerve Repair and Regeneration. Adv Exp Med Biol. 2020;1249:173-201. [3] VIJAYAVENKATARAMAN S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater. 2020;106:54-69. [4] MEENA P, KAKKAR A, KUMAR M, et al. Advances and clinical challenges for translating nerve conduit technology from bench to bed side for peripheral nerve repair. Cell Tissue Res. 2021;383(2):617-644. [5] 沈君劼,林俊卿,索金龙,等.组织工程化神经导管治疗周围神经损伤[J].国际骨科学杂志,2021,42(6): 379-383. [6] 龚超,张玉强,王伟,等.细胞治疗周围神经损伤的作用及机制[J].中国组织工程研究,2022,26(13): 2114-2119. [7] HAN Y, YANG J, FANG J, et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 2022;7(1):92. [8] HOANG DM, PHAM PT, BACH TQ, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022;7(1):272. [9] GALDERISI U, PELUSO G, DI BERNARDO G. Clinical Trials Based on Mesenchymal Stromal Cells are Exponentially Increasing: Where are We in Recent Years? Stem Cell Rev Rep. 2022;18(1):23-36. [10] YOUSEFI F, LAVI ARAB F, NIKKHAH K, et al. Novel approaches using mesenchymal stem cells for curing peripheral nerve injuries. Life Sci. 2019;221:99-108. [11] CUI Y, YAO Y, ZHAO Y, et al. Functional collagen conduits combined with human mesenchymal stem cells promote regeneration after sciatic nerve transection in dogs. J Tissue Eng Regen Med. 2018;12(5):1285-1296. [12] RODRÍGUEZ-SÁNCHEZ DN, PINTO GBA, CARTAROZZI LP, et al. 3D-printed nerve guidance conduits multi-functionalized with canine multipotent mesenchymal stromal cells promote neuroregeneration after sciatic nerve injury in rats. Stem Cell Res Ther. 2021;12(1):303. [13] HERSANT B, SID-AHMED M, BRAUD L, et al. Platelet-Rich Plasma Improves the Wound Healing Potential of Mesenchymal Stem Cells through Paracrine and Metabolism Alterations. Stem Cells Int. 2019;2019:1234263. [14] LEVOUX J, PROLA A, LAFUSTE P, et al. Platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and metabolic reprogramming. Cell Metab. 2021;33(3):688-690. [15] FERREIRA JR, TEIXEIRA GQ, SANTOS SG, et al. Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Front Immunol. 2018;9:2837. [16] VAN NIEL G, CARTER DRF, CLAYTON A, et al. Challenges and directions in studying cell-cell communication by extracellular vesicles. Nat Rev Mol Cell Biol. 2022;23(5):369-382. [17] VAN NIEL G, D’ANGELO G, RAPOSO G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213-228. [18] MAO Q, NGUYEN PD, SHANTI RM, et al. Gingiva-Derived Mesenchymal Stem Cell-Extracellular Vesicles Activate Schwann Cell Repair Phenotype and Promote Nerve Regeneration. Tissue Eng Part A. 2019;25(11-12):887-900. [19] JESSEN KR, MIRSKY R. The repair Schwann cell and its function in regenerating nerves. J Physiol. 2016;594(13):3521-3531. [20] JESSEN KR, ARTHUR-FARRAJ P. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia. 2019;67(3):421-437. [21] NOCERA G, JACOB C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci. 2020;77(20):3977-3989. [22] WANG Y, LIN J, CHEN J, et al. Biodegradable polyurethane-incorporating decellularized spinal cord matrix scaffolds enhance Schwann cell reprogramming to promote peripheral nerve repair. J Mater Chem B. 2023;11(10):2115-2128. [23] JACOBS FA, VAN DE VYVER M, FERRIS WF. Isolation and Characterization of Different Mesenchymal Stem Cell Populations from Rat Femur. Methods Mol Biol. 2019;1916:133-147. [24] 张学磊,罗干,于圣会,等.脱细胞神经联合骨髓间充质干细胞及富血小板凝胶治疗股神经损伤[J].中国组织工程研究,2022,26(1):27-32. [25] MAUREL P. Preparation of Neonatal Rat Schwann Cells and Embryonic Dorsal Root Ganglia Neurons for In Vitro Myelination Studies. Methods Mol Biol. 2018;1739:17-37. [26] LI H, LI B. PRP as a new approach to prevent infection: preparation and in vitro antimicrobial properties of PRP. J Vis Exp. 2013;(74):50351. [27] GORGUN C, CERESA D, LESAGE R, et al. Dissecting the effects of preconditioning with inflammatory cytokines and hypoxia on the angiogenic potential of mesenchymal stromal cell (MSC)-derived soluble proteins and extracellular vesicles (EVs). Biomaterials. 2021;269:120633. [28] FANG X, DENG J, ZHANG W, et al. Conductive conduit small gap tubulization for peripheral nerve repair. RSC Adv. 2020;10(28):16769-16775. [29] ZHANG P, HAN N, WANG T, et al. Biodegradable conduit small gap tubulization for peripheral nerve mutilation: a substitute for traditional epineurial neurorrhaphy. Int J Med Sci. 2013;10(2):171-175. [30] JESSEN KR, MIRSKY R. The Role of c-Jun and Autocrine Signaling Loops in the Control of Repair Schwann Cells and Regeneration. Front Cell Neurosci. 2022;15: 820216. [31] ARTHUR-FARRAJ PJ, LATOUCHE M, WILTON DK, et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron. 2012;75(4):633-647. [32] SHANG F, YU Y, LIU S, et al. Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioact Mater. 2020;6(3):666-683. [33] LE H, XU W, ZHUANG X, et al. Mesenchymal stem cells for cartilage regeneration. J Tissue Eng. 2020;11:2041731420943839. [34] COSTA-ALMEIDA R, CALEJO I, GOMES ME. Mesenchymal Stem Cells Empowering Tendon Regenerative Therapies. Int J Mol Sci. 2019;20(12):3002. [35] RAO F, ZHANG D, FANG T, et al. Exosomes from Human Gingiva-Derived Mesenchymal Stem Cells Combined with Biodegradable Chitin Conduits Promote Rat Sciatic Nerve Regeneration. Stem Cells Int. 2019;2019:2546367. [36] ZHANG W, FANG XX, LI QC, et al. Reduced graphene oxide-embedded nerve conduits loaded with bone marrow mesenchymal stem cell-derived extracellular vesicles promote peripheral nerve regeneration. Neural Regen Res. 2023;18(1):200-206. [37] LI C, LIU SY, ZHANG M, et al. Sustained release of exosomes loaded into polydopamine-modified chitin conduits promotes peripheral nerve regeneration in rats. Neural Regen Res. 2022;17(9):2050-2057. [38] BROSIUS LUTZ A, LUCAS TA, CARSON GA, et al. An RNA-sequencing transcriptome of the rodent Schwann cell response to peripheral nerve injury. J Neuroinflammation. 2022;19(1):105. [39] LIU JH, TANG Q, LIU XX, et al. Analysis of transcriptome sequencing of sciatic nerves in Sprague-Dawley rats of different ages. Neural Regen Res. 2018;13(12):2182-2190. [40] WELLEFORD AS, QUINTERO JE, SEBLANI NE, et al. RNA Sequencing of Human Peripheral Nerve in Response to Injury: Distinctive Analysis of the Nerve Repair Pathways. Cell Transplant. 2020;29:963689720926157. [41] HUANG J, ZHANG G, LI S, et al. Endothelial cell-derived exosomes boost and maintain repair-related phenotypes of Schwann cells via miR199-5p to promote nerve regeneration. J Nanobiotechnology. 2023;21(1):10. [42] MA Y, ZHOU D, ZHANG H, et al. Human Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote the Proliferation of Schwann Cells by Regulating the PI3K/AKT Signaling Pathway via Transferring miR-21. Stem Cells Int. 2021;2021:1496101. [43] YANG J, WANG B, WANG Y, et al. Exosomes Derived from Adipose Mesenchymal Stem Cells Carrying miRNA-22-3p Promote Schwann Cells Proliferation and Migration through Downregulation of PTEN. Dis Markers. 2022;2022:7071877. [44] REGMI S, RAUT PK, PATHAK S, et al. Enhanced viability and function of mesenchymal stromal cell spheroids is mediated via autophagy induction. Autophagy. 2021;17(10):2991-3010. [45] BALDARI S, DI ROCCO G, PICCOLI M, et al. Challenges and Strategies for Improving the Regenerative Effects of Mesenchymal Stromal Cell-Based Therapies. Int J Mol Sci. 2017;18(10):2087. [46] WU J, PIAO Y, LIU Q, et al. Platelet-rich plasma-derived extracellular vesicles: A superior alternative in regenerative medicine? Cell Prolif. 2021;54(12):e13123. [47] 马婉茹,聂志扬,胡俊华,等.富血小板血浆的临床应用[J].临床输血与检验, 2021,23(6):806-811. |
[1] | Qiu Xiaoyan, Li Bixin, Li Jingdi, Fan Chuiqin, Ma Lian, Wang Hongwu. Differentiation of insulin-producing cells from human umbilical cord mesenchymal stem cells infected by MAFA-PDX1 overexpressed lentivirus [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1000-1006. |
[2] | Liu Qiwei, Zhang Junhui, Yang Yuan, Wang Jinjuan. Role and mechanism of umbilical cord mesenchymal stem cells on polycystic ovary syndrome [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1015-1020. |
[3] | Liu Jianhong, Liao Shijie, Li Boxiang, Tang Shengping, Wei Zhendi, Ding Xiaofei. Extracellular vesicles carrying non-coding RNA regulate the activation of osteoclasts [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1076-1082. |
[4] | Pan Xiaolong, Fan Feiyan, Ying Chunmiao, Liu Feixiang, Zhang Yunke. Effect and mechanism of traditional Chinese medicine on inhibiting the aging of mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1091-1098. |
[5] | Liu Hanfeng, Wang Jingjing, Yu Yunsheng. Artificial exosomes in treatment of myocardial infarction: current status and prospects [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1118-1123. |
[6] | Zhuge Xiaoxuan, Li Ce, Bao Guangjie, Kang Hong. Potential value of canonical and non-canonical roles of connexin 43 in disease treatment [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1130-1136. |
[7] | Ma Shuwei, He Sheng, Han Bing, Zhang Liaoyun. Exosomes derived from mesenchymal stem cells in treatment of animals with acute liver failure: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1137-1142. |
[8] | Zhang Kefan, Shi Hui. Research status and application prospect of cytokine therapy for osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 961-967. |
[9] | Wei Yuanxun, Chen Feng, Lin Zonghan, Zhang Chi, Pan Chengzhen, Wei Zongbo. The mechanism of Notch signaling pathway in osteoporosis and its prevention and treatment with traditional Chinese medicine [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(4): 587-593. |
[10] | Lin Feng, Cheng Ling, Gao Yong, Zhou Jianye, Shang Qingqing. Hyaluronic acid hydrogel-encapsulated bone marrow mesenchymal stem cells promote cardiac function in myocardial infarction rats (III) [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(3): 355-359. |
[11] | Bi Yujie, Ma Dujun, Peng Liping, Zhou Ziqiong, Zhao Jing, Zhu Houjun, Zhong Qiuhui, Yang Yuxin. Strategy and significance of Chinese medicine combined with medical hydrogel for disease treatment [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(3): 419-425. |
[12] | Long Yi, Yang Jiaming, Ye Hua, Zhong Yanbiao, Wang Maoyuan. Extracellular vesicles in sarcopenic obesity: roles and mechanisms [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(2): 315-320. |
[13] | Li Chengming, Xue Dongling, Yang Xinyu, Xiao Chi, Cui Daping. Mechanism of Chinese medicine for promoting blood circulation and removing blood stasis combined with platelet-rich plasma to improve steroid-induced necrosis of the femoral head [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(2): 288-294. |
[14] | Fan Yongjing, Wang Shu, Jin Wulong. Characteristics, advantages and application of osteogenic differentiation of jaw bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(1): 100-106. |
[15] | Huang Yongbin, Wang Tao, Lou Yuanyi, Pang Jingqun, Chen Guanghua. Application prospect of mesenchymal stem cells in promoting muscle tissue repair [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(1): 107-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||