Chinese Journal of Tissue Engineering Research ›› 2024, Vol. 28 ›› Issue (2): 315-320.doi: 10.12307/2023.867
Previous Articles Next Articles
Long Yi1, 2, Yang Jiaming1, 2, Ye Hua1, 2, Zhong Yanbiao3, 4, Wang Maoyuan2, 5
Received:
2022-11-29
Accepted:
2023-01-10
Online:
2024-01-18
Published:
2023-06-30
Contact:
Wang Maoyuan, MD, Professor, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China; Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou 341000, Jiangxi Province, China
About author:
Long Yi, Master candidate, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China; The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
Supported by:
CLC Number:
Long Yi, Yang Jiaming, Ye Hua, Zhong Yanbiao, Wang Maoyuan. Extracellular vesicles in sarcopenic obesity: roles and mechanisms[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(2): 315-320.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.2 细胞外囊泡可作为细胞间通讯的信使 靶细胞通过吞噬作用或内吞作用将细胞外囊泡中各种类型的生物活性货物转运至细胞内以发挥其生物学功能,进而介导细胞通讯[25]。细胞外囊泡是细胞间双向通信的载体,可在其外部发现受体和配体的双向表达以及同源配体或受体的细胞之间的货物转移[25-26]。最初细胞外囊泡被认为是无研究意义的膜碎片,但LOBB等[27]的研究表明,它们可以通过自分泌、旁分泌或内分泌方式转移信号分子,从而影响受体细胞的功能和表型。细胞外囊泡在调节生理过程中起着至关重要的作用,很多组织如脂肪会通过分泌细胞外囊泡的方式分泌细胞因子,调节脂肪组织中的免疫应答、葡萄糖和脂质代谢[28-29]。除细胞因子外,细胞外囊泡含有的内容物是组织之间的重要沟通媒介,其性质和数量具有细胞特异性,通常受供体细胞的生理或病理状态以及调节其产生和释放的刺激类型的影响[30-31]。"
2.3 细胞外囊泡与少肌性肥胖 少肌性肥胖是一种常见的进行性骨骼肌疾病,其特征是肌纤维发生萎缩和收缩功能障碍[32]。在肌肉萎缩期间,骨骼肌作为内分泌器官发挥作用,从肌纤维释放的绝大多数肌因子通过细胞外囊泡的形式调节肌肉和肌肉外组织的代谢[33]。在老年少肌性肥胖诱导的肌肉萎缩期间,肌肉和脂肪组织衍生的细胞外囊泡及其包封的miRNA通过不断破坏卫星细胞的线粒体动力学平衡,进而促进肌萎缩的发生[33-34]。事实上,脂肪组织参与广泛的器官间交流,肥胖促进巨噬细胞的积累、细胞衰老、促炎症因子的产生和分泌[35]。肥胖个体脂肪中脂肪因子的释放与内分泌失调、慢性炎症和胰岛素抵抗有关[36]。 促炎脂质还通过旁分泌激素和细胞因子,产生肌细胞内脂质促进前馈周期。这种脂毒性会损害肌肉纤维收缩力并干扰肌肉蛋白质合成,增加少肌性肥胖带来的不良影响[37-39]。目前的研究表明,脂肪细胞和肌肉细胞可以释放细胞外囊泡来调节临近受体细胞的表型和稳态[35]。通过该途径,肌肉和脂肪组织交换信息以调节肌量和脂肪含量。此外,其他研究表明,细胞外囊泡参与代谢性疾病的发展[40]。因此,准确理解这些细胞外囊泡传达的信息非常重要,并且已成为越来越多科学研究的主题。 2.3.1 细胞外囊泡在少肌性肥胖发病机制中的参与 少肌性肥胖是多因素疾病,它并不是肥胖和肌少症的简单结合,而是通过复杂的机制相互调节[41]。随着时间的推移,增龄代谢变化会促进脂肪沉积,并伴有促炎级联事件发生[42],导致肌肉发生萎缩及出现功能障碍[41-45],见表2。"
在少肌性肥胖中,细胞外囊泡主要是参与调节骨骼肌炎症反应和肌细胞平衡稳态。白色脂肪组织在全身各处贮存从而形成肥胖,其分泌的细胞外囊泡中脂肪因子的含量受肥胖程度调节[39],体质量指数越高,白色脂肪组织来源的细胞外囊泡分泌量也增加。少肌性肥胖中肌肉萎缩和肌量减少伴随着脂质沉积,肌卫星细胞和终末分化的肌纤维数量减少,Ⅱ型糖酵解肌纤维发生萎缩,直径减小,肌肉被脂肪组织浸润,并在后期阶段被纤维化组织浸润[46]。肌细胞内脂质的沉积进一步加重脂毒性,从而诱发和加重线粒体功能障碍、氧化应激、胰岛素抵抗和炎症反应[37],一系列的恶性循环加快了骨骼肌萎缩的进程。CAMINO等[47]发现肥胖者白色脂肪组织衍生的细胞外囊泡携带了与脂毒性炎症和胰岛素抵抗有关的蛋白质,会破坏骨骼肌的代谢稳态。在少肌性肥胖疾病发展进程中,肌肉逐渐流失,肌分化因子(MyoD)激活细胞外囊泡释放的miR-206并抑制卵泡抑菌素样1和抗肌萎缩蛋白相关蛋白。 细胞外囊泡中所含的miR-1可以下调肌肉转录因子抑制剂组蛋白去乙酰化酶4进而促进肌肉细胞的分化[48],通过损害肌肉纤维收缩力并干扰肌肉蛋白质合成,导致骨骼肌发生萎缩,加剧少肌性肥胖的不良影响。 细胞外囊泡通过提供特定的致病标志物(miRNA和蛋白质等)来促进少肌性肥胖的发生和发展。脂肪和骨骼肌之间的串扰在骨骼肌萎缩和再生进程中起着重要作用,这主要是一些肌因子和脂肪因子的相互作用的结果[49]。脂肪组织是循环细胞外囊泡miRNA的主要来源,很多与肥胖相关的代谢性疾病与细胞外囊泡的产生和释放有关[16]。有研究表明,脂肪细胞来源的细胞外囊泡循环水平在肥胖小鼠和人类中升高,而在能量限制或减肥手术后降低[16,50]。脂肪细胞衍生的细胞外囊泡中的miRNA水平在肥胖个体和瘦个体之间表达具有显著差异性,这表明除了较高的循环水平外,细胞外囊泡包含的miRNA受到个体脂肪含量的调节。目前对于脂肪组织来源的细胞外囊泡在肥胖个体中产生和调节的确切机制尚不清楚。目前广泛的研究认为与肥胖相关的代谢性疾病与细胞外囊泡的产生和释放具有相关性,miRNA在疾病发病机制中可能充当了媒介的作用,而其中的机制仍需进一步研究。骨骼肌衍生的细胞外囊泡可以被脂肪组织吸收[51],见图4。"
在功能上,骨骼肌分泌的肌因子如肌肉生长抑制素、白细胞介素6,7参与肌肉肥大和肌肉再生,而脑源性神经营养因子和白细胞介素6参与腺苷酸活化激酶介导的脂肪氧化参与了胰岛素抵抗、脂肪生成和脂质代谢的调节[51]。鉴于骨骼肌来源的细胞外囊泡可以通过控制脂质储存来调节脂肪细胞代谢和分化,因此推测骨骼肌来源的细胞外囊泡可能参与脂肪组织的生长和发育。在肌肉再生过程中骨骼肌来源的细胞外囊泡可作为抗脂肪信号,抑制纤维或脂肪祖细胞分化为脂肪细胞。另外,在肌管分化过程中收集的骨骼肌来源的细胞外囊泡可以内化为脂肪组织干细胞,诱导它们与邻近细胞融合,产生表达肌球蛋白重链和肌间线蛋白的肌管样细胞,促进骨骼肌再生[52]。当肌肉经历再生时,骨骼肌释放具有生物活性的细胞外囊泡来劫持脂肪组织中的干细胞,以重建肌肉并恢复肌肉质量。肌因子和脂肪因子的表达、分泌可能受到衰老、肥胖和包括运动在内的积极生活方式的干扰,从而影响肌肉调节途径,见图5。"
由此可知,在骨骼肌再生和发育的过程中,骨骼肌细胞均可能释放细胞外囊泡并参与调节一系列的生理进程。因此,确定骨骼肌来源的细胞外囊泡在骨骼肌和脂肪组织发育中的作用将是非常有意义的。 2.3.2 细胞外囊泡在少肌性肥胖中的诊断潜力 细胞外囊泡可以作为代谢性疾病的诊断和预后的生物标志物[53]。在少肌性肥胖的诊断中,细胞外囊泡也承担着至关重要的角色。细胞外囊泡在少肌性肥胖中的诊断潜力主要是因为脂滴包被蛋白A、脂联素及miR-130b等的存在[16,54]。与健康体质量的正常个体相比,肥胖人群中富含脂滴包被蛋白A的血浆细胞外囊泡水平更高(约10倍)[55]。脂滴包被蛋白A有望成为脂肪细胞来源的循环细胞外囊泡的新型生物标志物,循环脂滴包被蛋白A阳性细胞外囊泡或许是脂肪组织健康的关键指标。脂联素是脂肪分泌的一种细胞因子,循环脂联素在肌少症中的浓度低于非肌少症的老年人,在兼患肌少症和心血管疾病患者的血清细胞外囊泡中脂联素浓度较高[56],而在体力活动匹配的非肌少症的老年人和年轻人之间没有差异[57]。脂联素水平升高可能预示着老年人肌肉力量和功能下降。WANG等[58]研究证明,在脂肪细胞发生过程中分泌的细胞外囊泡中可检测出miR-130b 表达随体脂增加而增加,其循环丰度在肥胖个体和肥胖小鼠中升高,且与体质量指数密切相关,可用于预测代谢综合征。miR-130b能够靶向肌肉细胞,抑制其靶基因过氧化物酶体增殖物激活受体γ辅助激活因子1α(peroxlsome proliferator-activated receptor-γ coactlvator-1α, PGC-1α)的表达,进而调节肌肉的脂质氧化。因此可以通过检测细胞外囊泡中的脂滴包被蛋白A、脂联素、miR-130b等的存在来对少肌性肥胖进行诊断。生物信息学预测分析出miRNA-26b-5p,miRNA-155-5p 和miRNA-34b-5p等是与少肌性肥胖非常相关的因子[59],可能在少肌性肥胖的疾病发病机制中发挥重要作用,且多种miRNA-26b-5p、miRNA-34b-5p已被证明存在于细胞外囊泡[60-61]。目前这些miRNAs在少肌性肥胖疾病进程中的具体机制还未阐明,后期需要更多实验去探究。因此,对于少肌性肥胖个体细胞外囊泡中内容物的进一步研究或许可以为探寻有价值的诊断标志物做贡献,对于预防少肌性肥胖的严重并发症的发生具有积极意义。 2.3.3 细胞外囊泡在少肌性肥胖中的治疗潜力 运动是目前治疗少肌性肥胖的主要干预方式,可有效提高肌肉质量和力量。有氧运动和阻力训练是强有力的治疗策略,是治疗少肌性肥胖中肌肉萎缩的核心组成部分,即使最小的阻力运动也能提高肌肉力量和质量,促进萎缩骨骼肌的再生[62]。运动促进的骨骼肌分泌细胞外囊泡,促进骨骼肌和脂肪与其它器官或细胞间进行物质交流,提高人体新陈代谢是介导对健康的全身益处的可能机制。细胞外囊泡及其miRNAs是运动期间组织串扰的一种重要手段[51]。研究表明,运动期间循环细胞外囊泡数量增多,骨骼肌收缩并释放包括促炎和抗炎细胞因子在内的运动因子,它们被包装在细胞外囊泡中通过旁分泌机制运送货物促进细胞间通讯,增强新陈代谢反应,创造骨骼肌修复最佳的微环境[63-64]。Whitham等[65]实验研究发现,在健康人进行1 h的循环运动后可观察到300多种循环蛋白质的增加,组成细胞外囊泡的几类蛋白质显著富集。在不同的运动类型下,骨骼肌、全血浆以及血清衍生的细胞外囊泡的miRNA表达的时间和幅度会发生变化,训练状态可能会影响富含细胞外囊泡中miRNA表达的变化。与久坐不动的男性相比,训练有素的老年男性在急性运动时表现出miRNA表达改变[64]。这些发现支持细胞外囊泡是运动反应的潜在介质,其包含的蛋白质和miRNA发挥主要功能的观点。运动后骨骼肌释放的细胞外囊泡可能是用来治疗少肌性肥胖的潜在靶点。 细胞外囊泡易于从血液中获取,能够运输生物活性货物通过生物屏障,且易通过生物工程修改内容物以及靶标特异性,因此细胞外囊泡已成为治疗各种疾病的无细胞疗法[66]。特别是,来自间充质干细胞的细胞外囊泡可以完全模仿亲本间充质干细胞的免疫调节和再生功能,因此已被用作各种炎症性疾病的潜在治疗剂[67]。近年来大量关于间充质干细胞衍生的细胞外囊泡的临床试验方案已公开注册。然而,在各种临床研究中,脂肪干细胞衍生的细胞外囊泡的治疗应用于少肌性肥胖仍处于早期阶段。最近的研究表明,细胞外囊泡通过作为脂肪组织、肝脏、骨骼肌和免疫细胞之间的通讯媒介,在肥胖及其代谢并发症的发展中发挥作用[68]。高脂肪饮食会改变动物肠道细胞外囊泡的脂质组成,进而降低胰岛素敏感性。肠道微生物衍生的细胞外囊泡可能是高脂饮食促进的胰岛素抵抗和葡萄糖代谢损伤发展的关键参与者[69-70]。因此,肠道微生物的细胞外囊泡对于胰岛素调控和葡萄糖代谢相关的疾病具有广泛治疗靶点的潜力。在少肌性肥胖中,来自脂肪和骨骼肌组织细胞外囊泡介导的分泌和加工与骨骼肌质量、功能和病理的调节有关[71-82],相关研究成果见表3。"
细胞外囊泡与细胞之间的信号交换和疾病进展有关,因此细胞外囊泡的内容物,包括蛋白质或miRNA,可能是预测少肌性肥胖中肌肉萎缩的潜在靶标。未来可以设计包含特定 DNA、RNA蛋白质或药物的细胞外囊泡以递送到靶细胞,从而在少肌性肥胖的研究策略中具有相当大的优势。 除了作为治疗靶点外,细胞外囊泡还可作为药物载体提高药物的生物利用度。治疗药物通过电穿孔的方式转移到细胞外囊泡中,利用其本身具有的靶向能力能够提高药物在体内的利用率,以达到精准和有效治疗的目的[83]。细胞外囊泡可穿过血脑屏障将其具有生物活性的货物转移到局部或远处器官来调节细胞间信号传导。细胞外囊泡作为细胞产生的天然纳米级膜囊泡,具有很高的安全性,在药物递送中具有广泛的应用前景。虽然细胞外囊泡疗法为很多代谢性疾病治疗带来曙光,但目前仍处于早期阶段,存在大量挑战,如细胞外囊泡的大规模生产、优化的药物加载策略、质控放行标准等。白藜芦醇是一种非常有潜力的治疗少肌性肥胖的药物,但是单一药物治疗的疗效和递送效率有限,它们的生物利用度比较差[84]。白藜芦醇代谢物经过血浆细胞外囊泡运输可显著提高药物递送效率[85]。因此,在治疗少肌性肥胖方面,考虑将白藜芦醇包封在细胞外囊泡中,可以避免强烈的细胞代谢和转运蛋白的限制,增强治疗效果。但是目前还未有研究将细胞外囊泡载药应用于少肌性肥胖的治疗中,未来需要进行更多的基础研究去探究其有效性。"
[1] CRUZ-JENTOFT AJ, SAYER AA. Sarcopenia. Lancet. 2019;393(10191):2636-2646. [2] GAO Q, MEI F, SHANG Y, et al. Global prevalence of sarcopenic obesity in older adults: a systematic review and meta-analysis. Clin Nutr. 2021;40(7):4633-4641. [3] 吉彤,汤哲, 李耘,等.老年人少肌性肥胖预防和治疗策略 [J].中华老年医学杂志,2020,39(7):845-849. [4] ROUBENOFF R. Sarcopenic obesity: the confluence of two epidemics. Obes Res. 2004;12(6):887-888. [5] STEWART ST, CUTLER DM, ROSEN AB. Forecasting the effects of obesity and smoking on U.S. life expectancy. N Engl J Med. 2009;361(23):2252-2260. [6] KIM Y, WHITE T, WIJNDAELE K, et al. Adiposity and grip strength as long-term predictors of objectively measured physical activity in 93 015 adults: the UK Biobank study. Int J Obes (Lond). 2017;41(9):1361-1368. [7] MA J, HWANG SJ, MCMAHON GM, et al. Mid-adulthood cardiometabolic risk factor profiles of sarcopenic obesity. Obesity (Silver Spring). 2016;24(2): 526-534 [8] AKBAR N, DIGBY JE, CAHILL TJ, et al. Endothelium-derived extracellular vesicles promote splenic monocyte mobilization in myocardial infarction. JCI Insight. 2017;2(17):e93344. [9] LIU ML, WERTH VP, WILLIAMS KJ. Blood plasma versus serum: which is right for sampling circulating membrane microvesicles in human subjects? Ann Rheum Dis. 2020;79(6):e73. [10] 王琎,陈建英. 细胞外囊泡研究新进展[J].中国组织工程研究,2017, 21(4):621-626. [11] CYPESS AM, LEHMAN S, WILLIAMS G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509-1517. [12] LEHMANN BD, PAINE MS, BROOKS AM, et al. Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 2008;68(19):7864-7871. [13] ROME S. Muscle and adipose tissue communicate with extracellular vesicles. Int J Mol Sci. 2022;23(13):7052. [14] 杨东丽,杨琼,罗嘉,等.外泌体参与骨骼肌机能调控研究进展[J].动物医学进展,2018,39(1):103-108. [15] STEPANIAN A, BOURGUIGNAT L, HENNOU S, et al. Microparticle increase in severe obesity: not related to metabolic syndrome and unchanged after massive weight loss. Obesity (Silver Spring). 2013;21(11):2236-2243. [16] EGUCHI A, LAZIC M, ARMANDO AM, et al. Circulating adipocyte-derived extracellular vesicles are novel markers of metabolic stress. J Mol Med (Berl). 2016;94(11):1241-1253. [17] CHEN Y, LI G, LIU ML. Microvesicles as emerging biomarkers and therapeutic targets in cardiometabolic diseases. Genomics Proteomics Bioinformatics. 2018;16(1):50-62. [18] BI P, MCANALLY JR, SHELTON JM, et al. Fusogenic micropeptide Myomixer is essential for satellite cell fusion and muscle regeneration. Proc Natl Acad Sci U S A. 2018;115(15):3864-3869. [19] TIDBALL J G. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol. 2005;288(2):R345-R353. [20] DEMONBREUN AR, MCNALLY EM. Muscle cell communication in development and repair. Curr Opin Pharmacol. 2017;34:7-14. [21] JOANISSE S, NEDERVEEN JP, SNIJDERS T, et al. Skeletal muscle regeneration, repair and remodelling in aging: the importance of muscle stem cells and vascularization. Gerontology. 2017;63(1):91-100. [22] WOLF P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13(3):269-288. [23] AKERS JC, GONDA D, KIM R, et al. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1-11. [24] ZIJLSTRA A, DI VIZIO D. Size matters in nanoscale communication. Nat Cell Biol. 2018;20(3):228-230. [25] MAAS SLN, BREAKEFIELD XO, WEAVER AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017;27(3):172-188. [26] VAN NIEL G, CHARRIN S, SIMOES S, et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell. 2011;21(4):708-721. [27] LOBB RJ, BECKER M, WEN SW, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015;4: 27031. [28] NIU C, WANG X, ZHAO M, et al. Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion. J Am Heart Assoc. 2016;5(10):e004099. [29] HUANG Z, XU A. Adipose Extracellular vesicles in intercellular and inter-organ crosstalk in metabolic health and diseases. Front Immunol. 2021;12: 608680. [30] KALRA H, DRUMMEN GPC, MATHIVANAN S. Focus on extracellular vesicles: introducing the next small big thing. Int J Mol Sci. 2016;17(2):170. [31] MINCIACCHI VR, FREEMAN MR, DI VIZIO D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 2015;40:41-51. [32] BATSIS JA, VILLAREAL DT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol. 2018;14(9): 513-537. [33] SHAO X, GONG W, WANG Q, et al. Atrophic skeletal muscle fibre-derived small extracellular vesicle miR-690 inhibits satellite cell differentiation during ageing. J Cachexia Sarcopenia Muscle. 2022;13(6):3163-3180. [34] ITOKAZU M, ONODERA Y, MORI T, et al. Adipose-derived exosomes block muscular stem cell proliferation in aged mouse by delivering miRNA Let-7d-3p that targets transcription factor HMGA2. J Biol Chem. 2022; 298(7):102098. [35] VALADI H, EKSTRöM K, BOSSIOS A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-659. [36] DALLE S, ROSSMEISLOVA L, KOPPO K. The Role of Inflammation in Age-Related Sarcopenia. Front Physiol. 2017;8:1045. [37] IDOATE F, CADORE EL, CASAS-HERRERO A, et al. Adipose tissue compartments, muscle mass, muscle fat infiltration, and coronary calcium in institutionalized frail nonagenarians. Eur Radiol. 2015;25(7):2163-2175. [38] PORTER C, HURREN NM, COTTER MV, et al. Mitochondrial respiratory capacity and coupling control decline with age in human skeletal muscle. Am J Physiol Endocrinol Metab. 2015;309(3):E224-E232. [39] FERRANTE SC, NADLER EP, PILLAI DK, et al. Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatr Res. 2015;77(3):447-454. [40] HUANG-DORAN I, ZHANG CY, VIDAL-PUIG A. Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol Metab. 2017;28(1):3-18. [41] WANNAMETHEE SG, ATKINS JL. Muscle loss and obesity: the health implications of sarcopenia and sarcopenic obesity. Proc Nutr Soc. 2015; 74(4):405-412. [42] KALINKOVICH A, LIVSHITS G. Sarcopenic obesity or obese sarcopenia: a cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res Rev. 2017;35:200-221. [43] GAMBACCIANI M, CIAPONI M, CAPPAGLI B, et al. Prospective evaluation of body weight and body fat distribution in early postmenopausal women with and without hormonal replacement therapy. Maturitas. 2001;39(2):125-132. [44] KADI F. Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. Br J Pharmacol. 2008;154(3):522-528. [45] NILWIK R, SNIJDERS T, LEENDERS M, et al. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp Gerontol. 2013;48(5):492-498. [46] VERDIJK LB, SNIJDERS T, DROST M, et al. Satellite cells in human skeletal muscle; from birth to old age. Age (Dordr). 2014;36(2):545-547. [47] CAMINO T, LAGO-BAAMEIRO N, BRAVO SB, et al. Human obese white adipose tissue sheds depot-specific extracellular vesicles and reveals candidate biomarkers for monitoring obesity and its comorbidities. Transl Res. 2022;239:85-102. [48] MONTECALVO A, LARREGINA AT, SHUFESKY WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119(3):756-766. [49] FRüHBECK G, GóMEZ-AMBROSI J, MURUZáBAL FJ, et al. The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am J Physiol Endocrinol Metab. 2001;280(6):E827-E847. [50] HUBAL MJ, NADLER EP, FERRANTE SC, et al. Circulating adipocyte-derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obesity (Silver Spring). 2017;25(1):102-110. [51] VECHETTI IJ, PECK BD, WEN Y, et al. Mechanical overload-induced muscle-derived extracellular vesicles promote adipose tissue lipolysis. FASEB J. 2021;35(6):e21644. [52] DE GASPERI R, HAMIDI S, HARLOW LM, et al. Denervation-related alterations and biological activity of miRNAs contained in exosomes released by skeletal muscle fibers. Sci Rep. 2017;7(1):12888. [53] HUANG D, CHEN J, HU D, et al. Advances in biological function and clinical application of small extracellular vesicle membrane proteins. Front Oncol. 2021;11:675940. [54] OUCHI N, PARKER JL, LUGUS JJ, et al. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85-97. [55] CAMPELLO E, ZABEO E, RADU C M, et al. Dynamics of circulating microparticles in obesity after weight loss. Intern Emerg Med. 2016;11(5):695-702. [56] SONG HJ, OH S, QUAN S, et al. Gender differences in adiponectin levels and body composition in older adults: Hallym aging study. BMC Geriatr. 2014;14:8. [57] CAN B, KARA O, KIZILARSLANOGLU MC, et al. Serum markers of inflammation and oxidative stress in sarcopenia. Aging Clin Exp Res. 2017;29(4):745-752. [58] WANG YC, LI Y, WANG XY, et al. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia. 2013;56(10):2275-2285. [59] 付婉瑞,古再丽努尔·卡德尔,冯颖.增龄相关肌少性肥胖的生物信息学分析[J].老年医学与保健,2022,28(2):285-290,295. [60] YIN X, TIAN M, ZHANG J, et al. MiR-26b-5p in small extracellular vesicles derived from dying tumor cells after irradiation enhances the metastasis promoting microenvironment in esophageal squamous cell carcinoma. Cancer Lett. 2022; 541:215746. [61] ZHAO J, LIN H, HUANG K, et al. Cancer-associated fibroblasts-derived extracellular vesicles carrying lncRNA SNHG3 facilitate colorectal cancer cell proliferation via the miR-34b-5p/HuR/HOXC6 axis. Cell Death Discov. 2022;8(1):346. [62] TAAFFE DR, DURET C, WHEELER S, et al. Once-weekly resistance exercise improves muscle strength and neuromuscular performance in older adults. J Am Geriatr Soc. 1999;47(10):1208-1214. [63] PEDERSEN BK, SALTIN B. Exercise as medicine -evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports. 2015;25 Suppl 3:1-72. [64] NAIR VD, GE Y, LI S, et al. Sedentary and trained older men have distinct circulating exosomal microRNA profiles at baseline and in response to acute exercise. Front Physiol. 2020;11:605. [65] WHITHAM M, PARKER BL, FRIEDRICHSEN M, et al. Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab. 2018;27(1):237-251.e4. [66] WIKLANDER OPB, BRENNAN MÁ, LöTVALL J, et al. Advances in therapeutic applications of extracellular vesicles Sci Transl Med. 2019;11(492):eaav8521. [67] EL ANDALOUSSI S, MäGER I, BREAKEFIELD XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347-357. [68] FREEMAN DW, NOREN HOOTEN N, EITAN E, et al. Altered extracellular vesicle concentration, cargo, and function in diabetes. Diabetes. 2018; 67(11):2377-2388. [69] CHOI Y, KWON Y, KIM DK, et al. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle. Sci Rep. 2015;5:15878. [70] KUMAR A, SUNDARAM K, MU J, et al. High-fat diet-induced upregulation of exosomal phosphatidylcholine contributes to insulin resistance. Nat Commun. 2021;12(1):213. [71] O’LEARY MF, WALLACE GR, BENNETT AJ, et al. IL-15 promotes human myogenesis and mitigates the detrimental effects of TNFα on myotube development. Sci Rep. 2017;7(1):12997. [72] YALCIN A, SILAY K, BALIK AR, et al. The relationship between plasma interleukin-15 levels and sarcopenia in outpatient older people. Aging Clin Exp Res. 2018;30(7):783-790. [73] WATERS DL, QUALLS CR, DORIN RI, et al. Altered growth hormone, cortisol, and leptin secretion in healthy elderly persons with sarcopenia and mixed body composition phenotypes. J Gerontol A Biol Sci Med Sci. 2008;63(5):536-541. [74] KOHARA K, OCHI M, TABARA Y, et al. Leptin in sarcopenic visceral obesity: possible link between adipocytes and myocytes. PLoS One. 2011;6(9):e24633. [75] REBALKA IA, MONACO CMF, VARAH NE, et al. Loss of the adipokine lipocalin-2 impairs satellite cell activation and skeletal muscle regeneration. Am J Physiol Cell Physiol. 2018;315(5):C714-C721. [76] SANDRI M, BARBERI L, BIJLSMA AY, et al. Signalling pathways regulating muscle mass in ageing skeletal muscle: the role of the IGF1-Akt-mTOR-FoxO pathway. Biogerontology. 2013;14(3):303-323. [77] ZHANG L, ZHANG D, QIN ZY, et al. The role and possible mechanism of long noncoding RNA PVT1 in modulating 3T3-L1 preadipocyte proliferation and differentiation. IUBMB Life. 2020;72(7):1460-1467. [78] ZHAO Y, ZHAO J, GUO X, et al. Long non-coding RNA PVT1, a molecular sponge for miR-149, contributes aberrant metabolic dysfunction and inflammation in IL-1β-simulated osteoarthritic chondrocytes. Biosci Rep. 2018;38(5):BSR20180576. [79] CHEN JF, MANDEL EM, THOMSON JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38(2):228-233. [80] NAKASA T, ISHIKAWA M, SHI M, et al. Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model. J Cell Mol Med. 2010;14(10):2495-2505. [81] DRUMMOND MJ, MCCARTHY JJ, SINHA M, et al. Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics. 2011;43(10):595-603. [82] DRUMMOND MJ, MCCARTHY JJ, FRY CS, et al. Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am J Physiol Endocrinol Metab. 2008;295(6):E1333-E1340. [83] LI YJ, WU JY, WANG JM, et al. Emerging strategies for labeling and tracking of extracellular vesicles. J Control Release. 2020;328:141-159. [84] HUANG Y, ZHU X, CHEN K, et al. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging (Albany NY). 2019;11(8):2217-2240. [85] IGLESIAS-AGUIRRE CE, ÁVILA-GáLVEZ MÁ, LóPEZ DE LAS HAZAS MC, et al. Exosome-containing extracellular vesicles contribute to the transport of resveratrol metabolites in the bloodstream: a human pharmacokinetic study. Nutrients. 2022;14(17):3632. [86] MASTROTOTARO L, RODEN M. Insulin resistance and insulin sensitizing agents. Metabolism. 2021;125:154892. [87] FIGLIOLINI F, RANGHINO A, GRANGE C, et al. Extracellular vesicles from adipose stem cells prevent muscle damage and inflammation in a mouse model of hind limb ischemia: role of neuregulin-1. Arterioscler Thromb Vasc Biol. 2020;40(1):239-254. |
[1] | Chang Wanpeng, Zhang Zhongwen, Yang Yulin, Zi Yang, Yang Mengqi, Du Bingyu, Wang Nan, Yu Shaohong. Efficacy of rehabilitation exoskeleton robots on post-stroke lower limb motor dysfunction: a Meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(2): 321-328. |
[2] | Sun Yuan, Wang Qingbo, Pi Yihua, Lu Chunmin, Xu Chuanyi, Zhang Yan. Effects of early and late aerobic exercise on right heart failure induced by monocrotaline in rats with pulmonary hypertension [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(2): 177-185. |
[3] | Chen Guanting, Zhang Linqi, Li Qingru. Research hot spots and trends of exosomes in theranostic application for chronic kidney disease [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(1): 86-92. |
[4] | Huang Yongbin, Wang Tao, Lou Yuanyi, Pang Jingqun, Chen Guanghua. Application prospect of mesenchymal stem cells in promoting muscle tissue repair [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(1): 107-112. |
[5] | Yang Ting, Ding Zhibin, Jiang Nan, Han Hongxia, Hou Miaomiao, Ma Cungen, Song Lijuan, Li Xinyi. Astrocytes regulate glial scar formation in cerebral ischemic stroke [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(1): 131-138. |
[6] | Long Qingxi, Zhang Pingshu, Liu Qing, Ou Ya, Zhang Lili, Yuan Xiaodong. Single-cell RNA sequencing reveals the heterogeneity of astrocytes [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(1): 139-146. |
[7] | Wang Xianfeng, Wang Kun, Sun Han, Sun Xiaoliang, Yan Litao. Mechanism underlying exosomal lncRNA H19 derived from umbilical cord mesenchymal stem cells promotes cartilage injury repair [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(1): 20-25. |
[8] | Zheng Rongjiong, Deng Zerun, Han Dan, Sun Lihua. Mechanism underlying rat hepatocyte apoptosis regulated by exosomes derived from bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(1): 44-49. |
[9] | Zheng Mingkui, Xue Chenhui, Guan Xiaoming, Ma Xun. Human umbilical cord mesenchymal stem cell-derived exosomes reduce the permeability of blood-spinal cord barrier after spinal cord injury [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(1): 50-55. |
[10] | Fang Xingyan, Tian Zhenli, Zhao Zheyi, Wen Ping, Xie Tingting. Effects of sodium arsenite on human umbilical vein endothelial cell injury and sphingosine kinases 1/sphingosine 1-phosphate signaling axis [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(在线): 1-7. |
[11] | Nong Fuxiang, Jiang Zhixiong, Li Yinghao, Xu Wencong, Shi Zhilan, Luo Hui, Zhang Qinglang, Zhong Shuang, Tang Meiwen. Bone cement augmented proximal femoral nail antirotation for type A3.3 intertrochanteric femoral fracturalysis [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(在线): 1-10. |
[12] | Guo Shuhui, Yang Ye, Jiang Yangyang, Xu Jianwen. Screening and validation of neurogenic bladder miRNA-mRNA regulatory network [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(在线): 1-8. |
[13] | Pan Zhongjie, Qin Zhihong, Zheng Tiejun, Ding Xiaofei, Liao Shijie. Targeting of non-coding RNAs in the pathogenesis of the osteonecrosis of the femoral head [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(9): 1441-1447. |
[14] | Cai Zhihao, Xie Zhaoyong. Femoral neck anteversion measurement assessment: how to establish a unified method and standard [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(9): 1448-1454. |
[15] | Dang Yi, Du Chengyan, Yao Honglin, Yuan Nenghua, Cao Jin, Xiong Shan, Zhang Dingmei, Wang Xin. Hormonal osteonecrosis and oxidative stress [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(9): 1469-1476. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||