Chinese Journal of Tissue Engineering Research ›› 2020, Vol. 24 ›› Issue (21): 3372-3378.doi: 10.3969/j.issn.2095-4344.2682
Previous Articles Next Articles
Hu Baoyang1, 2, Yang Xuejun2
Received:
2019-12-02
Revised:
2019-12-05
Accepted:
2020-01-10
Online:
2020-07-28
Published:
2020-04-17
Contact:
Yang Xuejun, Master, Chief physician, Department of Thoracolumbar Spine Surgery, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010030, Inner Mongolia Autonomous Region, China
About author:
Hu Baoyang, Master candidate, Physician, Inner Mongolia Medical University, Hohhot 010020, Inner Mongolia Autonomous Region, China; Department of Thoracolumbar Spine Surgery, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010030, Inner Mongolia Autonomous Region, China
Supported by:
CLC Number:
Hu Baoyang, Yang Xuejun. Research progress and development space of microRNA in the process of intervertebral disc degeneration[J]. Chinese Journal of Tissue Engineering Research, 2020, 24(21): 3372-3378.
2.1 miRNA调控细胞外基质相关机制 胶原蛋白和多聚蛋白是椎间盘细胞外基质的主要构成成分,髓核组织是由凝胶状基质、Ⅱ型胶原蛋白和多聚蛋白组成[10]。纤维环组织厚而致密,结构分为外环和内环。外环是由大量的Ⅰ型胶原蛋白和少量的多聚蛋白组成。内环存在Ⅰ和Ⅱ型胶原蛋白,并且具有较多的多聚蛋白。在正常情况下,细胞外基质合成和降解速率处于平衡状态;当椎间盘退变时,细胞外基质分解代谢快于合成代谢[11]。因此,胶原蛋白和多聚蛋白逐渐丧失被认为是椎间盘退变的主要病理特征。 研究报道称,杜仲在促进髓核细胞增殖和细胞外基质合成方面扮演了重要角色[12]。YANG等[13]在评估髓核细胞中杜仲的主要成分桃叶珊瑚苷对肿瘤坏死因子α和白细胞介素1β诱导细胞外基质降解作用的实验中发现,miR-140过表达会增强桃叶珊瑚苷对细胞外基质的降解作用。此外,CREB1是免疫信号传导主要转录因子,是miR-140的直接下游靶基因。CREB1敲低miR-140后显示细胞外基质降解减少,肿瘤坏死因子α或白细胞介素1β刺激诱导的基质金属蛋白酶3和ADAMTS5上调程度显著降低,并且髓核细胞中的桃叶珊瑚苷水平进一步下调;相反,被肿瘤坏死因子α或白细胞介素1β抑制的Ⅱ型胶原蛋白可以通过CREB1敲低而上调。总之在调节miR-140/CREB1时,桃叶珊瑚苷会改变肿瘤坏死因子α或白细胞介素1β诱导的髓核细胞中细胞外基质降解。 另外有研究报道,miR-7与miR-132通过生长分化因子5影响细胞外基质,进而加速椎间盘退变。LIU等[14]研究显示,miR-7在退变髓核细胞和白细胞介素1β刺激的髓核细胞中高度表达。利用双荧光素酶报告基因测定miR-7靶基因为生长分化因子5。miR-7过表达显著增强白细胞介素1β诱导的细胞外基质变性,而miR-7功能抑制后阻止了白细胞介素1β诱导的髓核细胞有害分解代谢变化。miR-132在退变髓核组织中上调[15],这与其启动子的低甲基化密切相关。双荧光素酶报道基因测定显示,miR-132过表达导致髓核细胞中细胞外基质分解代谢因子(包括基质金属蛋白酶13和ADAMTS4)表达增加,而合成代谢蛋白(如Ⅱ型胶原蛋白和多聚蛋白)的水平减少,并且确定生长分化因子5为miR-132的负调节靶基因。这些研究结果表明,miR-7和miR-132可以通过靶向生长分化因子5造成椎间盘中的细胞外基质受损。 ZHANG等[16]发现在退变髓核细胞中miR-155下调与基质金属蛋白酶16高表达存在密切关联。实验中将上调miR-155或下调miR-155转导到大鼠椎间盘中,发现miR-155上调导致大鼠髓核细胞中基质金属蛋白酶16表达水平降低,多聚蛋白和Ⅱ型胶原蛋白增加;miR-155下调结果相反。放射学和组织学分析显示,miR-155上调减缓椎间盘退变,而miR-155下调导致椎间盘退变加速。结果表明miR-155敲低有助于基质金属蛋白酶16表达水平升高,基质金属蛋白酶16进一步降解多聚蛋白和Ⅱ型胶原蛋白,导致椎间盘脱水和变性。YE等[17]也发现miR-155与ERK1/2通过某种关联来调节髓核细胞退变。研究证明细胞外调节激酶表达随着正常髓核细胞中miR-155的过表达而降低。随着miR-155被抑制,细胞外调节激酶表达水平升高。实验结果提示在退变椎间盘中miR-155生物学功能是重要组成部分。 KANG等[18]发现在退变髓核细胞和白细胞介素1β诱导的髓核细胞中miR-15b表达水平明显升高,过表达miR-15b会加速白细胞介素1β诱导的髓核细胞中细胞外基质降解,而抑制miR-15b具有相反作用。通过siRNA敲低smad3蛋白减弱miR-15敲低对白细胞介素1β诱导的髓核细胞细胞外基质变性预防作用,另外在白细胞介素1β诱导髓核细胞中,MAPK和核因子κB的激活上调miR-15b表达,并下调smad3蛋白表达。所以miR-15b通过靶向smad3蛋白促进髓核细胞中的细胞外基质降解。WANG等[19]发现miR-154在退变髓核细胞中表达水平较高,抑制miR-154可以增加Ⅱ型胶原蛋白和多聚蛋白表达,降低基质金属蛋白酶13和ADAMTS4的mRNA表达,而miR-154过表达则有相反作用。此外,成纤维细胞生长因子14是miR-154的靶基因,并且成纤维细胞生长因子14过表达与miR-154抑制有相似效果。王磊等[20]研究发现,在退变性腰椎侧凸患者髓核组织中miR-491-5p表达显著下调,并且与椎间盘退变程度呈负相关。敲低miR-491-5p通过调控基质金属蛋白酶9引起Ⅱ型胶原大量丢失,最终形成椎间盘退变及退变性脊柱侧凸。SUN等[21]研究发现小鼠椎间盘退变模型髓核细胞中miR-181a表达下调,肿瘤坏死因子相关凋亡配体表达上调。miR-181a上调和细胞外调节激酶通路抑制可降低肿瘤坏死因子相关凋亡配体、细胞外调节激酶相关基因、炎症因子和Ⅰ型胶原的表达,但会促进Ⅱ型胶原的表达。miR-181a上调通过抑制肿瘤坏死因子相关凋亡配体而使细胞外调节激酶相关基因通路失活,从而保护椎间盘组织,减轻炎症反应。FARROKHI等[22]研究结果表明miR-199a-5p在退变椎间盘中表达水平高出正常椎间盘。Hippo信号通路和脂肪酸生物合成是miR-199a-5p影响胶原合成和细胞外基质再生的潜在途径。 2.2 miRNA调节细胞凋亡相关机制 细胞凋亡是指在生物体中凋亡蛋白酶参与下发生一系列的生理或病理活动,主要包括染色体浓缩、细胞体积减小、DNA降解和凋亡小体形成。细胞凋亡还广泛参与许多退变性疾病,如骨关节炎[23]、神经变性和椎间盘退变[24-26]。在椎间盘退变组织中,异常细胞凋亡会引起细胞外基质代谢不平衡,对其进行针对性干预可减轻细胞外基质代谢紊乱,甚至减缓椎间盘退变进展[27-28],在维持椎间盘稳定性方面起着至关重要作用。因此,加强髓核细胞凋亡研究可以提高对椎间盘退变认识,并可以提供潜在治疗策略。 间充质干细胞释放的一种特殊细胞外囊泡称为外泌体,它们与膜内容物结合转移到受体细胞中,支持间充质干细胞抑制细胞凋亡,减少损伤和/或促进受体细胞修复[29]。CHENG等[30]从间充质干细胞培养基中分离间充质干细胞-外泌体,并在大鼠椎间盘退变模型中评估其抗细胞凋亡作用,发现miR-21表达水平在髓核细胞中下调,并且间充质干细胞-外泌体在miR-21中相对集中。通过PTEN和PI3K-Akt途径将外泌体-miR-21转入髓核细胞,从而减轻肿瘤坏死因子α诱导的髓核细胞凋亡。在椎间盘内注射间充质干细胞-外泌体后减轻了髓核细胞凋亡和椎间盘退变程度。总之,间充质干细胞衍生外泌体可以延缓髓核细胞凋亡过程,并且部分通过外泌体中miR-21成分减轻椎间盘退变。 WANG等[31]发现在肿瘤坏死因子α诱导的退变髓核细胞模型中miR-199表达水平降低。使用重组腺相关病毒载体感染抑制miR-199表达,显著促进了肿瘤坏死因子α诱导的髓核细胞凋亡,而miR-199过度表达则相反。miR-199过表达与MAP30K的30-UTR结合在转录和翻译水平上抑制MAP3K5的表达,而抑制miR-199可以上调MAP3K5的表达,并且MAP3K5在肿瘤坏死因子α处理的髓核细胞中高表达,肿瘤坏死因子α诱导细胞凋亡率与MAP3K5表达水平升高有关。文献重点强调的是,miR-199对肿瘤坏死因子α诱导的髓核细胞凋亡抑制作用随着MAP3K5表达敲低被消除,所以MAP3K5表达下调可调控miR-199表达水平,从而抑制髓核细胞损伤。 Lü等[32]研究显示退变髓核细胞中miR-30d表达水平显著升高,抑制miR-30d可增强髓核细胞活力并减少凋亡,同时增加Ⅱ型胶原蛋白和多聚蛋白数量,miR-30d过表达则显示相反作用。miR-30d直接靶向SOX9的3'非翻译区,并对SOX9的表达产生负调控。文献中同时报道,通过siRNA抑制SOX9表达可阻断miR-30d促进髓核细胞凋亡和细胞外基质降解的作用。所以通过上调SOX9抑制miR-30d表达最终可以减缓椎间盘的退变。 LIU等[33]发现随着椎间盘退变程度加重miR-125a下调,而拟南芥受体激酶Bak1上调程度也随之改变。miRNA-125a与髓核细胞凋亡呈负相关,而Bak1 mRNA与细胞凋亡呈正相关。在体外转染miR-125a过表达时,髓核细胞凋亡受到抑制,Bak1、Caspase-3和Bax表达下调,Bcl-2表达上调。此外,siBak1可以逆转髓核细胞中miR-125a 敲低促进的细胞凋亡功能。 LIU等[34]通过研究发现miR-222-3p对椎间盘髓核细胞退变影响。椎间盘退变组织中的miR-222-3p表达显著高于正常椎间盘组织,其过度表达显著增加细胞凋亡,并且减少髓核细胞增殖。此外,过表达miR-222-3p会促进基质金属蛋白酶3的分泌,而Ⅱ型胶原蛋白和多聚蛋白表达水平呈现下降趋势。CDKN1B为miR-222-3p在髓核细胞中的负调节靶基因,miR-222-3p表达与CDKN1B表达呈负相关。 2.3 miRNA调节细胞自噬相关机制 自噬是细胞通过溶酶体吞噬和降解自身细胞质和细胞器的过程,其在生长、发育、细胞稳定和成熟分化等方面起着重要作用[35]。作为一种独立的Ⅱ型程序性细胞死亡过程,自噬与细胞凋亡存在着密切关联[36]。 很早就有研究报道miR-21过表达会引起人类髓核细胞增殖能力提升,显示出miR-21可能是椎间盘退变的潜在因素[37-38]。WANG等[39]进一步的研究发现与健康对照组相比,在退变髓核细胞中椎间盘退变严重程度与miR-21表达水平呈正相关。髓核细胞功能获得和功能丧失实验显示,miR-21过表达抑制自噬,然后上调基质金属蛋白酶3和基质金属蛋白酶9的表达,导致Ⅱ型胶原蛋白和多聚蛋白降解增加。从机制上讲,PTEN被确定为miR-21的靶基因,而激活的PTEN/Akt/mTOR信号通路参与miR-21抑制自噬及Ⅱ型胶原蛋白和多聚蛋白分解。 WANG等[40]对miR-153-3p和基因间长链非编码RNA00641之间的生物学功能进行研究。将髓核细胞培养于正常营养和低营养环境中,miR-153-3p在退变髓核细胞中下调,并且基因间长链非编码RNA00641可以影响Ⅱ型胶原蛋白和基质金属蛋白酶3表达。在营养缺乏状态下,髓核细胞中检测到基因间长链非编码RNA00641上调和miR-153-3p下调。基因间长链非编码RNA00641可通过靶向miR-153-3p和自噬相关蛋白5 调节细胞死亡。更重要的是,基因间长链非编码RNA00641通过miR-153-3p影响自噬相关蛋白5表达、细胞死亡及椎间盘退变。这些发现揭示了一种在椎间盘退变中由基因间长链非编码RNA00641、miR-153-3p和自噬相关蛋白5组成的新调控通路。 ZHANG等[41]发现miR-210可以靶向HOXA9来调控髓核细胞凋亡,揭示了miR-210与椎间盘退变的联系。WANG等[42]还发现miR-210升高水平程度与椎间盘退变程度呈正相关,并且miR-210抑制自噬并上调基质金属蛋白酶3和基质金属蛋白酶13表达,增加Ⅱ型胶原蛋白和多聚蛋白降解。该研究中自噬相关蛋白7被确定为miR-210靶基因,通过siRNA抑制自噬相关蛋白7可消除 miR-210受到抑制后对基质金属蛋白酶3、基质金属蛋白酶13、Ⅱ型胶原蛋白和多聚蛋白表达的影响。综上所述,miR-210通过沉默自噬相关蛋白7抑制自噬,导致退变髓核细胞中Ⅱ型胶原蛋白和多聚蛋白降解增加。 2.4 miRNA与软骨终板退变相关机制 miR-221可以阻止骨髓间充质干细胞软骨分化[43-44]。SHENG等[45]从特发性脊柱侧凸和椎间盘退变患者中收集正常和退变软骨终板组织,并从这些组织中分离出软骨终板细胞。研究结果显示,退变软骨终板组织中Ⅱ型胶原蛋白、多聚蛋白、转化生长因子β和雌激素受体α表达水平降低,而基质金属蛋白酶3、ADAMTS5、白细胞介素1β、肿瘤坏死因子α、白细胞介素6和miR-221表达水平升高。用17β-雌二醇处理退变软骨终板细胞可增加Ⅱ型胶原蛋白和多聚蛋白表达以及转化生长因子β分泌,但减少白细胞介素6的分泌。此外,雌二醇抑制细胞凋亡,在细胞周期G0/G1期中提高细胞活性。这些数据结果都表明雌激素对软骨终板具有保护作用。双荧光素酶报告基因试验证实雌激素受体α是miR-221的靶点。高表达miR-221或敲除雌激素受体α均减弱了雌二醇保护作用,但敲低miR-221则相反。所以miR-221可能通过靶向雌激素受体α而削弱雌激素对退变软骨终板细胞的保护作用。 LIU等[46]发现软骨终板基质硬度与椎间盘退变程度呈正相关,而软骨终板退变导致基质僵硬,促进了软骨细胞中无机磷酸盐诱导钙化,在这个过程中miR-20a随着硬度增加显著上调,并且进行性强直性蛋白下调。通过双荧光素酶报告基因试验测定确认miR-20a直接靶向进行性强直性蛋白的3’-非翻译区。当miR-20a表达受到抑制时,钙沉积和钙化相关基因表达下降,而miR-20a过表达增强了软骨终板细胞钙化功能。进行性强直性蛋白过表达减少了软骨细胞焦磷酸盐外流,抑制了钙化发生。进行性强直性蛋白表达水平与软骨终板退变程度呈反比。因此,miR-20a /进行性强直性蛋白轴诱导促进软骨终板钙化,miR-20a和进行性强直性蛋白是抑制软骨终板退变进展的潜在调控途径。 CHEN等[47]研究了miR-34a表达与软骨终板细胞凋亡之间的关系。在退变软骨终板细胞中,miR-34a表达水平与细胞凋亡数量显著升高。生物信息学预测确定bcl-2为miR-34a靶基因。此外,miR-34a通过直接靶向其3'-非翻译区来抑制bcl-2表达,并且该抑制作用可以被miR-34a结合位点突变所消除。敲低miR-34a会导致bcl-2过表达,而miR-34a上调会抑制bcl-2表达水平。miR-34a表达受到拮抗时,Fas介导细胞凋亡也减少。综上所述,上调miR-34a表达水平增强Fas介导的软骨终板细胞凋亡。 ZHENG等[48]发现miR-365是一种机械反应性miRNA,可以引起软骨终板细胞增殖。miR-365结合位点突变使组蛋白去乙酰化酶4的3’非翻译区受到抑制,表明miR-365与组蛋白去乙酰化酶4的3’UTR结合。miR-365过表达显著降低软骨终板细胞组蛋白去乙酰化酶4蛋白表达水平,组蛋白去乙酰化酶4过表达抑制了miR-365延缓软骨终板细胞退变作用。此外,Wnt/β-catenin信号通路与组蛋白去乙酰化酶4表达有关,并促进软骨终板细胞退变。综上所述,miR-365是一种机械敏感的miRNA,对软骨终板退变起到一定影响。 2.5 miRNA调节与纤维环退变相关机制 HAI等[49]研究显示褪黑素具有促进纤维环细胞增殖,诱导自噬和抑制细胞凋亡作用。此外,褪黑激素有助于自噬相关蛋白自噬相关蛋白7的翻译和转录,并抑制纤维环细胞中miR-106a-5p的功能。miR-106a-5p直接与纤维环细胞中的3'UTR结合来介导自噬相关蛋白7表达。 YEH等[50]从特发性脊柱侧弯和退变性脊柱侧弯患者中分离出正常纤维环组织和退变纤维环组织,退变纤维环细胞显示出比正常的纤维环细胞更高的成骨分化潜能。与升高的Smads蛋白相比,退变纤维环细胞中miR-221表达水平与正常纤维环细胞相比显著降低。miR-221过表达显著降低退变纤维环细胞中骨形态发生蛋白2、Smads蛋白和成骨基因的表达,降低了退变纤维环细胞的成骨潜能。与正常纤维环细胞相比,退变纤维环细胞具有更大成骨分化趋势的原因可能与miR-221调节BMP-Smad途径相关。 "
[1] BOOS N, WEISSBACH S, ROHRBACH H, et al.Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine(Phila Pa 1976).2002;27(23): 2631-2644. [2] 邵楠,王大民,陈茁,等.腰椎融合术后生理前凸与腰痛关联性的研究[J].中华临床医师杂志(电子版),2012,6(24):8142-8146. [3] ANDERSSON GBJ. Epidemiological features of chronic low-back pain. Lancet. 1999; 354(9178): 581-585. [4] TAYLOR VM, DEYO RA, CHERKIN DC, et al. Low back pain hospitalization. Recent United States trends and regional variation. Spine(Phila Pa 1976). 1994; 19(11): 1207-1212; discussion 13. [5] LUO X, PIETROBON R, SUN SX, et al. Estimates and patterns of direct health care expenditures among individuals with back pain in the United States. Spineb(Phila Pa 1976).2004;29(1): 79-86. [6] BATTIE MC, VIDEMAN T, GIBBONS LE, et al. 1995 Volvo Award in clinical sciences. Determinants of lumbar disc degeneration. A study relating lifetime exposures and magnetic resonance imaging findings in identical twins.Spine(Phila Pa 1976). 1995; 20(24): 2601-2612. [7] LEE RC, FEINBAUM RL, AMBROS V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell.1993; 75(5):843. [8] STERN-GINOSSAR N, ELEFANT N, ZIMMERMANN A, et al. Host immune system gene targeting by a viral miRNA.Science. 2007; 317(5836):376-381. [9] BOSSÉ GD, SIMARD MJ. A new twist in the microRNA pathway: Not Dicer but Argonaute is required for a microRNA production. Cell Res.2010; 20(7): 735. [10] JANECZKO Ł, JANECZKO M, CHRZANOWSKI R, et al. The role of polymorphisms of genes encoding collagen IX and XI in lumbar disc disease.Neurol Neurochir Pol.2014; 48(1): 60-62. [11] LE MAITRE CL, POCKERT A, BUTTLE DJ, et al. Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans.2007;35(Pt 4):652-655. [12] YANG S, LI L, ZHU L, et al. Bu-Shen-Huo-Xue-Fang (BSHXF) modulates nucleus pulposus cell proliferation and extracellular matrix (ECM) remodeling in intervertebral disc degeneration through miR-483 regulation of Wnt pathway.J Cell Biochem. 2019;120(12):19318-19329. [13] YANG S, LI L, ZHU L, et al. Aucubin inhibits IL-1β-or TNF-α- induced extracellular matrix degradation in nucleus pulposus cell through blocking the miR-140-5p/CREB1 axis. J Cell Physiol. 2019; 234(8):13639-13648. [14] LIU W, ZHANG Y, XIA P, et al. MicroRNA-7 regulates IL-1β-induced extracellular matrix degeneration by targeting GDF5 in human nucleus pulposus cells.Biomed Pharmacother. 2016; 83: 1414-1421. [15] LIU W, XIA P, FENG J, et al. MicroRNA-132 upregulation promotes matrix degradation in intervertebral disc degeneration. Exp Cell Res.2017; 359(1): 39-49. [16] ZHANG WL, CHEN YF, MENG HZ, et al. Role of miR-155 in the regulation of MMP‐16 expression in intervertebral disc degeneration. J Orthop Res. 2017; 35(6): 1323-1334. [17] YE D, DAI L, YAO Y, et al. miR-155 inhibits nucleus pulposus cells’ degeneration through targeting ERK 1/2. Dis Markers. 2016; 2016(1): 1-7. [18] KANG L, YANG C, YIN H, et al. MicroRNA-15b silencing inhibits IL-1β-induced extracellular matrix degradation by targeting SMAD3 in human nucleus pulposus cells. Biotechnol Lett. 2017; 39(4): 623-632. [19] WANG J, LIU X, SUN B, et al. Upregulated miR‐154 promotes ECM degradation in intervertebral disc degeneration. J Cell Biochem. 2019;120(7): 11900-11907. [20] 王磊,李天旺,刘建强,等. MicroRNA-491-5p 调控基质金属蛋白酶 9 参与退变性腰椎侧凸的发病机制[J].中国组织工程研究, 2016,20(2): 248. [21] SUN Y,SHI X,PENG X,et al.MicroRNA-181a exerts anti-inflammatory effects via inhibition of the ERK pathway in mice with intervertebral disc degeneration.J Cell Physiol.2019; 235(3): 2676-2686. [22] FARROKHI MR, KARIMI MH, GHAFFARPASAND F, et al. MicroRNA-199a Upregulation Mediates Lumbar Intervertebral Disc Degeneration and is Associated with Clinical Grades of Degeneration.Turk Neurosurg.2019;8:1-8. [23] ZHOU Y, LIU S, PENG H, et al. In vivo anti-apoptosis activity of novel berberine-loaded chitosan nanoparticles effectively ameliorates osteoarthritis. Int Immunopharmacol. 2015; 28(1): 34-43. [24] CHENG S, HOU J, ZHANG C, et al. Minocycline reduces neuroinflammation but does not ameliorate neuron loss in a mouse model of neurodegeneration. Sci Rep.2015; 5:10535. [25] HUANG G, ZOU J, SHI J, et al. Electroacupuncture stimulates remodeling of extracellular matrix by inhibiting apoptosis in a rabbit model of disc degeneration. J Evidence-Based Complementary Altern Med. 2015; 2015:386012. [26] YANG SD, YANG DL, SUN YP, et al. 17β-estradiol protects against apoptosis induced by interleukin-1β in rat nucleus pulposus cells by down-regulating MMP-3 and MMP-13. Apoptosis. 2015; 20(3): 348-357. [27] WANG T, YANG SD, LIU S, et al. 17β-estradiol inhibites tumor necrosis factor-α induced apoptosis of human nucleus pulposus cells via the PI3K/Akt pathway. Med Sci Monit.2016; 22: 4312. [28] YANG SD, MA L, YANG DL, et al. Combined effect of 17β-estradiol and resveratrol against apoptosis induced by interleukin-1β in rat nucleus pulposus cells via PI3K/Akt/caspase-3 pathway.Peer J.2016; 4:e1640. [29] AKYUREKLI C, LE Y, RICHARDSON RB, et al. A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Rev Rep. 2015; 11(1):150-160. [30] CHENG X, ZHANG G, ZHANG L, et al. Mesenchymal stem cells deliver exogenous miR‐21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. J Cell Mol Med.2018; 22(1): 261-276. [31] WANG W, GUO Z, YANG S, et al. Upregulation of miR-199 attenuates TNF-α-induced Human nucleus pulposus cell apoptosis by downregulating MAP3K5. Biochem Biophys Res Commun. 2018; 505(3): 917-924. [32] LÜ J, LI S, WAN T, et al. Inhibition of microRNA-30d attenuates the apoptosis and extracellular matrix degradation of degenerative human nucleus pulposus cells by up-regulating SOX9. Chem -Biol Interact.2018; 296: 89-97. [33] LIU P, CHANG F, ZHANG T, et al. Downregulation of microRNA-125a is involved in intervertebral disc degeneration by targeting pro-apoptotic Bcl-2 antagonist killer 1. Iran J Basic Med Sci. 2017; 20(11): 1260. [34] LIU J, YU J, JIANG W, et al. Targeting of CDKN 1B by miR‐222-3p may contribute to the development of intervertebral disc degeneration. FEBS Open Bio.2019; 9(4): 728-735. [35] BISHOP E, BRADSHAW TD. Autophagy modulation: a prudent approach in cancer treatment? Cancer Chemother Pharmacol. 2018;82(6):913-922. [36] MUKHOPADHYAY S, PANDA PK, SINHA N, et al. Autophagy and apoptosis: where do they meet? Apoptosis.2014; 19(4): 555-566. [37] CHEN B, HUANG SG, JU L, et al. Effect of microRNA-21 on the proliferation of human degenerated nucleus pulposus by targeting programmed cell death 4. Braz J Med Biol Res.2016; 49(6). pii: S0100-879X2016000600602. doi: 10.1590/1414-431X20155020. [38] LIU H, HUANG X, LIU X, et al. miR-21 promotes human nucleus pulposus cell proliferation through PTEN/AKT signaling. Int J Mol Sci. 2014; 15(3): 4007-4018. [39] WANG WJ, YANG W, OUYANG ZH, et al. MiR-21 promotes ECM degradation through inhibiting autophagy via the PTEN/akt/mTOR signaling pathway in human degenerated NP cells. Biomed Pharmacother.2018; 99: 725-734. [40] WANG XB, WANG H, LONG HQ, et al. LINC00641 regulates autophagy and intervertebral disc degeneration by acting as a competitive endogenous RNA of miR‐153‐3p under nutrition deprivation stress. J Cell Physiol 2019; 234(5): 7115-7127. [41] ZHANG DY, WANG ZJ,YU YB, et al. Role of microRNA‑210 in human intervertebral disc degeneration.Exp Ther Med. 2016; 11(6): 2349-2354. [42] WANG C, ZHANG ZZ, YANG W, et al. MiR-210 facilitates ECM degradation by suppressing autophagy via silencing of ATG7 in human degenerated NP cells.Biomed Pharmacother. 2017; 93: 470-479. [43] LOLLI A, NARCISI R, LAMBERTINI E, et al. Silencing of antichondrogenic microRNA‐221 in human mesenchymal stem cells promotes cartilage repair in vivo.Stem Cells.2016;34(7): 1801-1811. [44] LOLLI A, LAMBERTINI E, PENOLAZZI L, et al. Pro-chondrogenic effect of miR-221 and slug depletion in human MSCs. Stem Cell Rev Rep.2014; 10(6):841-855. [45] SHENG B, YUAN Y, LIU X, et al. Protective effect of estrogen against intervertebral disc degeneration is attenuated by miR-221 through targeting estrogen receptor α. Acta Biochim Biophys Sin. 2018; 50(4):345-354. [46] LIU MH, SUN C, YAO Y, et al. Matrix stiffness promotes cartilage endplate chondrocyte calcification in disc degeneration via miR-20a targeting ANKH expression. Sci Rep.2016; 6: 25401. [47] CHEN H, WANG J, HU B, et al. MiR-34a promotes Fas-mediated cartilage endplate chondrocyte apoptosis by targeting Bcl-2. Mol Cell Biochem. 2015; 406(1-2): 21-30. [48] ZHENG Q, LI X, XIAO L, et al. MicroRNA-365 functions as a mechanosensitive microRNA to inhibit end plate chondrocyte degeneration by targeting histone deacetylase 4. Bone. 2019; 128: 115052. [49] HAI B, MA Y, PAN X, et al. Melatonin benefits to the growth of human annulus fibrosus cells through inhibiting mir-106a-5p/ATg7 signaling pathway. Clin Interv Aging.2019;14:621. [50] YEH CH, JIN L, SHEN F, et al. miR-221 attenuates the osteogenic differentiation of human annulus fibrosus cells. Spine J. 2016; 16(7): 896-904. [51] CHENG X, ZHANG G, ZHANG L, et al. Mesenchymal stem cells deliver exogenous miR‐21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. J Cell Mol Med.2018; 22(1):261-276. [52] KOBAYASHI S, BABA H,TAKENO K, et al. Fine structure of cartilage canal and vascular buds in the rabbit vertebral endplate. J Neurosurg.2008;9(1): 96-103. [53] LIU S, ZHAO B, SHI H, et al. Ligustrazine Inhibits Cartilage Endplate Hypertrophy via Suppression of TGF-β1.Evid Based Complement Alternat Med.2016;2016(4):1042489. [54] VADALA G, DE STROBEL F, BERNARDINI M, et al. The transpedicular approach for the study of intervertebral disc regeneration strategies: in vivo characterization.Eur Spine J. 2013; 22(6): 972-978. [55] LEE JM, SONG JY, BAEK MJ, et al. Interleukin‐1β induces angiogenesis and innervation in human intervertebral disc degeneration.J Orthop Res.2011; 29(2):265-269. [56] HOU G, LU H, CHEN M, et al. Oxidative stress participates in age-related changes in rat lumbar intervertebral discs. Arch Gerontol Geriatr. 2014; 59(3): 665-669. [57] PARK JS, PARK JB, PARK IJ, et al. Accelerated premature stress-induced senescence of young annulus fibrosus cells of rats by high glucose-induced oxidative stress. Int Orthop. 2014; 38(6): 1311-1320. [58] GRUBER HE, HOELSCHER GL, INGRAM JA, et al. Autophagy in the Degenerating Human Intervertebral Disc: In Vivo Molecular and Morphological Evidence, and Induction of Autophagy in Cultured Annulus Cells Exposed to Proinflammatory Cytokines- Implications for Disc Degeneration.Spine (Phila Pa 1976).2015; 40(11): 773-782. |
[1] | Liu Zhichao, Zhang Fan, Sun Qi, Kang Xiaole, Yuan Qiaomei, Liu Genzhe, Chen Jiang. Morphology and activity of human nucleus pulposus cells under different hydrostatic pressures [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1172-1176. |
[2] | Geng Qiudong, Ge Haiya, Wang Heming, Li Nan. Role and mechanism of Guilu Erxianjiao in treatment of osteoarthritis based on network pharmacology [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1229-1236. |
[3] | Liu Cong, Liu Su. Molecular mechanism of miR-17-5p regulation of hypoxia inducible factor-1α mediated adipocyte differentiation and angiogenesis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1069-1074. |
[4] | Geng Yao, Yin Zhiliang, Li Xingping, Xiao Dongqin, Hou Weiguang. Role of hsa-miRNA-223-3p in regulating osteogenic differentiation of human bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1008-1013. |
[5] | Pei Lili, Sun Guicai, Wang Di. Salvianolic acid B inhibits oxidative damage of bone marrow mesenchymal stem cells and promotes differentiation into cardiomyocytes [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1032-1036. |
[6] | Li Shibin, Lai Yu, Zhou Yi, Liao Jianzhao, Zhang Xiaoyun, Zhang Xuan. Pathogenesis of hormonal osteonecrosis of the femoral head and the target effect of related signaling pathways [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 935-941. |
[7] | Yang Yang, Yao Yu, Shen Xiaotian, Liu Jiajia, Xue Jianhua. Expression and significance of interleukin-21 in intervertebral disc degeneration [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 690-694. |
[8] | Xie Yang, Zhang Shujiang, Liu Menglan, Luo Ying, Yang Yang, Li Zuoxiao. Mechanism by which rapamycin protects spinal cord neurons in experimental autoimmune encephalomyelitis mice [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 695-700. |
[9] | Xu Yinqin, Shi Hongmei, Wang Guangyi. Effects of Tongbi prescription hot compress combined with acupuncture on mRNA expressions of apoptosis-related genes,Caspase-3 and Bcl-2, in degenerative intervertebral discs [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 713-718. |
[10] | Zhang Wenwen, Jin Songfeng, Zhao Guoliang, Gong Lihong. Mechanism by which Wenban Decoction reduces homocysteine-induced apoptosis of myocardial microvascular endothelial cells in rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 723-728. |
[11] | Liu Qing, Wan Bijiang. Effect of acupotomy therapy on the expression of Bcl-2/Bax in synovial tissue of collagen-induced arthritis rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 729-734. |
[12] | Xie Chongxin, Zhang Lei. Comparison of knee degeneration after anterior cruciate ligament reconstruction with or without remnant preservation [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 735-740. |
[13] | Ma Zetao, Zeng Hui, Wang Deli, Weng Jian, Feng Song. MicroRNA-138-5p regulates chondrocyte proliferation and autophagy [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 674-678. |
[14] | Chen Ziyang, Pu Rui, Deng Shuang, Yuan Lingyan. Regulatory effect of exosomes on exercise-mediated insulin resistance diseases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 4089-4094. |
[15] | Su Liping, Lu Ziyang, Liu Li, Zhang Wei, Su Tianyuan, Hu Xiayun, Pu Hongwei, Han Dengfeng. C-jun, Cytc and Caspase-9 in the apoptosis of cerebellar granule neurons induced by diacetylmorphine in rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 3943-3948. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||