Chinese Journal of Tissue Engineering Research ›› 2021, Vol. 25 ›› Issue (8): 1299-1304.doi: 10.3969/j.issn.2095-4344.2993
Previous Articles Next Articles
Yuan Mei1, Zhang Xinxin1, Guo Yisha1, Bi Xia2
Received:
2020-03-31
Revised:
2020-04-03
Accepted:
2020-05-09
Online:
2021-03-18
Published:
2020-12-14
Contact:
Bi Xia, MD, Department of Rehabilitation Medicine, Affiliated Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
About author:
Yuan Mei, Master candidate, Primary rehabilitation therapist, Shanghai University of Sport, Shanghai 200438, China
Supported by:
CLC Number:
Yuan Mei, Zhang Xinxin, Guo Yisha, Bi Xia. Diagnostic potential of circulating microRNA in vascular cognitive impairment[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1299-1304.
2.1 miR-132 miR-132是目前机制研究较多的一种microRNA,主要存在于海马组织中,是一种认知功能调控因子,参与神经元的分化、成熟以及功能形成过程,在认知功能的发生发展中发挥重要作用,研究发现miR-132只有维持在一定水平才有利于学习和记忆能力的形成,过高或过低的表达都会产生负面影响[4]。HUANG等[5]纳入脑卒中后认知障碍患者39例,卒中后认知功能正常患者37例和健康对照人群38例,检测不同组间血清miR-132的表达水平及蒙特利尔认知功能评分的变化,结果发现脑卒中后认知障碍组miR-132表达最高,且与蒙特利尔认知功能评分成高度负相关(r =-0.849,P < 0.001),表明血清miR-132表达越高,蒙特利尔认知功能评分越低,认知功能越差,提示血清miR-132对脑卒中后认知障碍有较高的早期诊断价值。除血清miR-132的研究外,近期有学者研究了脑脊液中miR-132的表达水平与认知功能之间的关系,YANG等[6]采集26例脑卒中后认知障碍患者和26例卒中后认知功能正常患者的脑脊液,检测对比两组间脑脊液中miR-132的表达差异,发现脑卒中后认知障碍组脑脊液的miR-132表达显著下调。miR-132还可能反映脑卒中后认知障碍的治疗进展,徐珊珊等[7]研究了92例脑卒中患者治疗前后外周血miR-132水平及简易智力状况检查量表评分的变化,结果显示所有患者治疗后外周血miR-132相对表达量均高于治疗前,且与简易智力状况检查量表评分结果成正相关,表明miR-132表达越高,简易智力状况检查量表评分越高,认知功能越好。综上研究,血清或脑脊液miR-132水平不仅能为血管性认知功能障碍的诊断提供一定参考,还可作为病情预后评估的参考指标。 2.2 miR-29a miR-29a是一种可以提高星状胶质细胞存活率的microRNA,在缺氧损伤后显著下调[8]。RAGUSA等[9]研究证实血管性痴呆患者血浆miR-29a表达水平较认知功能正常对照人群显著下调,且与简易智力状况检查量表评分成负相关,提示血浆miR-29a表达水平对血管性痴呆具有一定的预测诊断价值。在另一项研究中,BARBAGALLO等[10]研究不同人群(阿尔茨海默病患者、血管性痴呆患者和健康对照人群)血清外泌体中miR-29a的差异表达,结果发现相对于健康对照组和阿尔茨海默病组,血管性痴呆组miR-29a的表达显著下调,进一步的ROC曲线分析结果显示,miR-29a在血管性痴呆与阿尔茨海默病的鉴别诊断时也有相对较高的诊断价值(AUC=0.832),和较高的特异性(96%)。然而RAGUSA等[9]的研究中血浆miR-29a在血管性痴呆组和阿尔茨海默病组间并无显著性差异。综上可见,miR-29a可能用于预测诊断血管性痴呆,但预测诊断价值较低,目前对于miR-29a是否能够鉴别诊断血管性痴呆和阿尔茨海默病,在血浆和血清外泌体中的表达变化并不一致。 2.3 miR-130b miR-130b在缺血损伤后具有神经保护作用[11],与血管性认知功能障碍的发生发展密切相关。RAGUSA等[9]纳入38例血管性痴呆,40例阿尔茨海默病患者和40例认知功能正常的对照人群,检测3组间血浆中差异表达的microRNA并检测与简易智力状况检查量表评分之间的关系,结果发现,相对于认知功能正常人群,认知功能异常人群中miR-130b的表达显著下调,且阿尔茨海默病患者中的表达低于血管性痴呆;Pearson相关性分析发现,血管性痴呆患者中miR-29a表达与简易智力状况检查量表评分之间存在统计学显着负相关(r=-0.28,P=0.011),以上结果提示miR-130b是血管性痴呆的潜在诊断工具。进一步ROC曲线分析还发现相对于单独应用miR-130b预测诊断血管性痴呆(AUC=0.65),联合miR-10b进行诊断时具有更高的临床应用价值(AUC=0.789),以及更高的灵敏性和特异性,miR-130b也可用于鉴别诊断血管性痴呆和阿尔茨海默病。在另一项研究中的血清外泌体样本中发现类似的结果,BARBAGALLO等[10]纳入30例阿尔茨海默病患者,24例血管性痴呆患者和30例健康对照人群,检测3组间血清外泌体中差异表达的microRNA,结果发现相对于健康对照组,miR-130b在血管性痴呆组中的表达显著下调,血管性痴呆组miR-130b的表达也显著低于阿尔茨海默病组,和Ragusa等[9]血浆中的miR-130b的临床诊断价值相比(AUC=0.65),此时血清外泌体中miR-130b鉴别诊断血管性痴呆和阿尔茨海默病的临床应用价值更高(AUC=0.802),但灵敏性相对较低。 2.4 miR-93 下调miR-93的表达可减轻氧化应激反应,并减少神经元死亡和脑梗死体积,从而对缺血性脑卒中有神经保护作用,而在缺血再灌注损伤后可常见miR-93的表达上调[12]。周凡萍等[13]纳入脑卒中后认知障碍患者、脑卒中后认知功能正常患者以及健康对照人群各40例,结果发现miR-93在脑卒中后认知障碍血清中显著上调,且蒙特利尔认知功能评分与血清中miR-93-5p上调呈中度正相关(r=0.517,P=0.003),这些结果提示miR-93可作为预测脑卒中后认知障碍的生物标志物。miR-93还可以联合其他生物标志物提高诊断脑卒中后认知障碍的能力,黄墩兵等[14]纳入26例脑卒中后认知障碍患者、24例脑卒中后认知功能正常患者和25例健康对照人群,发现血清miR-93在脑卒中后认知障碍组的表达最高,可用于诊断脑卒中后认知障碍(AUC=0.757),同时联合血清miR-93和神经源性神经影响因子对脑卒中后认知障碍具有更高的预测诊断价值(AUC=0.837)。miR-93也有可能用于鉴别诊断阿尔茨海默病和血管性痴呆,DONG等[15]收集127例阿尔茨海默病患者、30例轻度认知功能障碍患者及30例血管性痴呆和123例无痴呆对照组患者的血清,发现与没有痴呆的对照组相比,阿尔茨海默病组血清中miR-93的表达显著下调,而在血管性痴呆组显著上调,与阿尔茨海默病组表达量变化相反,由此推测血清miR-93可以用于阿尔茨海默病和血管性痴呆的鉴别诊断。 2.5 miR-181c miR-181c参与并影响线粒体基因组蛋白编码,与神经元损伤存在密切联系[16]。神经元主要依靠线粒体提供能量,miR-181c水平升高会加剧线粒体功能紊乱,引起神经元细胞的凋亡最终导致神经功能受损。张仕娟等[17]研究158例急性脑卒中患者血清miR-181c与认知功能的关系,结果脑卒中后认知障碍组血清miR-181c相对表达量升高,是急性脑梗死患者发生认知功能异常的独立影响因素,对急性脑梗死患者发生认知功能受损具有一定的预测价值,是潜在的预测急性脑梗死患者发生认知功能受损的生物学指标。高血压是血管性认知功能障碍的重要致病因素之一,有研究证实在老年高血压合并认知功能障碍患者血清中miR-181c水平有明显变化,且与蒙特利尔认知功能评分正相关[18],可用于血管性认知功能障碍的临床诊断。 2.6 miR-146a miR-146a可通过抑制树突状微管相关蛋白1B的合成调节突触可塑性[19],已知突触可塑性是学习记忆认知功能的生物学基础,目前已有研究表明miR-146a与术后认知功能障碍及阿尔茨海默病等认知功能障碍性疾病的发病机制相关[20-21]。近年来研究发现miR-146a在血管性认知功能障碍诊断中也具有一定的临床应用价值。例如DONG等[15]纳入了127例阿尔茨海默病患者、30例血管性痴呆患者,研究发现血清miR-146a在血管性痴呆组显著上调,而在阿尔茨海默病组显著下调,由此推测血清miR-146a可能有鉴别诊断阿尔茨海默病和血管性痴呆的临床应用价值。除了血清样本的应用,最近的一项研究分析了miR-146a在痴呆患者脑脊液中的差异表达情况,MARCHEGIANI等[22]分析了70例阿尔茨海默病患者、17例血管性痴呆患者和43例认知功能正常的患者间脑脊液中差异表达的microRNA,发现相对于认知功能正常的患者,脑脊液miR-146a在血管性痴呆中上调,在阿尔茨海默病中下调,然而均无显著性差异。 2.7 miR-222 血管功能损伤是血管性认知功能障碍形成的重要因素之一,miR-222可通过靶向调控磷酸二酯酶3a的表达,参与维持血管的完整性,从而在血管性疾病中的发生发展中发挥重要作用[23]。Marchegiani等[22]纳入70例阿尔茨海默病患者, 血管性痴呆患者17例以及认知功能正常人43例,分析3组间脑脊液miR-222的表达差异,结果发现相对于认知正常组和阿尔茨海默病组,血管性痴呆组的miR-222显著上调。有学者在血清外泌体中发现不一样的研究结果,BARBAGALLO等[10]纳入了30例阿尔茨海默病患者、24例血管性痴呆患者及30例健康对照人群,分析3组间血清外泌体中miR-222的表达变化,发现miR-222在3组间并无显著性差异。 2.8 miR-10b 目前miR-10b在血管性认知功能障碍诊断中的应用价值较弱,具体如下。在一项研究中招募了38例血管性痴呆患者、40例阿尔茨海默病患者和40例认知功能正常人群,分析对比3组间血浆中差异表达的microRNA,结果发现,相对于认知功能正常组,miR-10b在血管性痴呆组的表达下调,提示miR-10b可作为临床诊断血管性认知功能障碍的生物标志物,然而进一步的ROC曲线分析结果提示miR-10b单独作为血管性认知功能障碍诊断工具的应用价值较低(AUC=0.63),进一步对比血管性痴呆和阿尔茨海默病两组间的miR-10b的差异表达情况,发现两组间miR-10b的表达并无显著性差异,因此不能作为鉴别血管性痴呆和阿尔茨海默病的临床诊断工具[9]。而在另一项纳入了30例阿尔茨海默病、24例血管性痴呆和30例健康对照人群的研究中,3组间血清外泌体中miR-10b的表达并无显著性差异[10]。 2.9 miR-21 在脑出血损伤24 h后miR-21在大鼠脑血肿周围及海马中表达上调,通过侧脑室注射抑制miR-21的表达可显著加快血肿吸收,改善血脑屏障通透性和认知功能[24]。miR-21也与突触可塑性密切相关,生物信息预测miR-21的靶基因调控功能发现,miR-21与神经元和轴突终末的突触塑性相联系(GO:0071679,P=0.077)[25]。可见miR-21在血管性认知功能障碍的发生发展中具有重要作用。在临床试验中已经发现血清中的miR-21可反映脑卒中后的神经功能损伤状况[26],此外,有研究在脑出血7 d内多时间点检测发现miR-21可呈曲线改变,但始终与脑血肿体积成正相关[24]。以上研究可见miR-21可反映脑卒中病理学的发生发展过程,并在血管性认知功能障碍的病理生理学机制中有重要角色,推测miR-21可作为血管性认知功能障碍临床诊断的生物标志物。然而,目前的研究显示miR-21作为血管性认知功能障碍诊断的生物标志物的使用价值有限。例如,MARCHEGIANI等[22]在纳入了17例血管性痴呆患者的研究中,分析血管性痴呆、阿尔茨海默病及认知功能正常组之间脑脊液中miR-21的表达差异,结果显示3组间并无显著性差异。在SORENSEN 等[27]的研究中也有类似的发现,通过对比miR-21在阿尔茨海默病组和包括血管性痴呆的其他痴呆组中的差异性表达,结果显示脑脊液和血液样本中均未发现miR-21的差异性表达,值得注意的是该实验仅纳入4例血管性痴呆患者,而且未单独分析血管性痴呆组也其他组间的差异性表达,其结果可能不足以证明miR-21在阿尔茨海默病和血管性痴呆组间无显著差异。 2.10 miR-124 miR-124是脑组织中最丰富的microRNA,在海马神经元中表达最高[28-29]。脑缺血损伤后血清中miR-124的表达可反映缺血损伤程度[30]。此外,miR-124还与神经突触可塑性密切相关,RAJASETHUPATHY等[31]通过体外神经元培养,抑制miR-124的表达并进行电生理实验检测神经突触可塑性,结果表明miR-124的抑制可通过调控转录因子CREB1增强长时程电位突触可塑性。此结论在体内也得以证明,抑制miR-124在小鼠海马中的表达可增强空间学习和工作记忆能力并上调与突触可塑性相关的基因的表达[32]。MIAO等[33]研究发现缺血后预处理可显著改善缺血/再灌注损伤诱导认知功能障碍,并认为大脑皮质和海马区的miR-124下调与此认知功能改善过程相关,以上研究表明miR-124在血管性认知功能障碍的发生发展中起关键作用。为了发掘在不同类型痴呆差异性表达的microRNA,SORENSEN等[27]纳入了10例阿尔茨海默病患者和包括4例血管性痴呆患者在内的其他类型的痴呆患者,检测阿尔茨海默病组和其他类型痴呆组间脑脊液和血液中差异性表达的microRNA,然而结果显示两组间的miR-124的表达并无显著性差异,考虑到该研究样本量小,且未单独对比血管性痴呆和其他类型痴呆间miR-124的表达是否存在显著性差异,作者认为不可直接得出miR-124在血管性认知功能障碍的诊断没有临床应用价值的结论,仍然需要进一步的研究证明。 2.11 其他microRNA 在血管性认知功能障碍的体液中还可见其他相关的microRNA,主要包括在血清及其外泌体、血浆和其他体液中的差异性表达。在血清中可见血管性痴呆组的miR-31显著上调,而在阿尔茨海默病组显著下调,被认为是一种鉴别诊断血管性痴呆和阿尔茨海默病潜在的microRNA [15]。在血清中还可发现脑卒中后认知障碍患者的miR-191-5p,miR-20a-5p,miR-20b-5p及miR-5991-y显著上调,miR-193b-5p显著下调,进一步构建ROC曲线分析发现其中miR-5991-y和miR-193b-5p有较高的诊断利用价值。Spearman分析结果表明蒙特利尔认知功能评分与miR-5991-y的相对表达量呈中等强度正相关(r=0.542,P < 0.05),与血清miR-193b-5p的相对表达量间存在中等强度负相关(r=-0.571,P < 0.05)[13]。此外在血清外泌体中,相对于健康对照组,血管性痴呆组中的miR-135a显著上调,miR-193b显著下调,研究认为miR-135a和miR-193b可能是潜在的血管性痴呆生物标志物。miR-34b和miR-384的表达在健康对照组和血管性痴呆间则无显著性差异,然而在血管性痴呆和阿尔茨海默病的鉴别诊断中具有一定的临床应用价值[10, 34]。在血浆中,血管性痴呆患者中可见miR-502-3p,miR-486-5p和miR-451a显著上调,而miR-409-3p显著下调,ROC曲线分析结果显示均有较高的AUC值(≥0.86),提示4种microRNA对于血管性认知功能障碍的预测诊断价值较高[35]。 研究还发现miR-125a基因单核苷酸多态性位点rs12976445可用于卒中后的痴呆风险预测,MA等[36]纳入 1 023例急性发作的缺血性卒中患者,包括534例脑卒中后认知障碍患者和489例脑卒中后认知功能正常患者,采集人脐周静脉血得到人脐静脉血管内皮细胞,研究发现基因单核苷酸多态性位点rs12976445干扰了miR-125a的表达,从而导致内皮细胞中内皮紧张素的表达增加,回归分析显示miR-125a基因单核苷酸多态性位点rs12976445与缺血性脑卒中后痴呆风险显著相关。"
[1] LEES RA, HENDRY BAK, BROOMFIELD N, et al. Cognitive assessment in stroke: feasibility and test properties using differing approaches to scoring of incomplete items. Int J Geriatr Psychiatry. 2017;32(10):1072-1078. [2] HILAL S, XU X, IKRAM MK, et al. Intracranial stenosis in cognitive impairment and dementia. J Cereb Blood Flow Metab. 2017;37(6):2262-2269. [3] PISCOPO P, LACORTE E, FELIGIONI M, et al. MicroRNAs and mild cognitive impairment: a systematic review. Ageing Res Rev. 2019;50:131-141. [4] HANSEN KF, KARELINA K, SAKAMOTO K, et al. MiRNA-132: a dynamic regulator of cognitive capacity. Brain Struct Funct. 2013;218(3):817-831. [5] HUANG S, ZHAO J, HUANG D, et al. Serum miR-132 is a risk marker of post-stroke cognitive impairment. Neurosci Lett. 2016;615:102-106. [6] YANG FW, WANG H, WANG C, et al. Upregulation of acetylcholinesterase caused by downregulation of microRNA-132 is responsible for the development of dementia after ischemic stroke. J Cell Biochem. 2020; 121(1):135-141. [7] 徐珊珊,曾友华,包烨华.针灸通督法联合黄连温胆汤对脑卒中患者外周血miR-132、miR-134的影响[J].中国现代医生,2019,57(24):137-140, 144. [8] STARY CM, SUN X, OUYANG Y, et al. miR-29a differentially regulates cell survival in astrocytes from cornu ammonis 1 and dentate gyrus by targeting VDAC1. Mitochondrion. 2016;30:248-254. [9] RAGUSA M, BOSCO P, TAMBURELLO L, et al. miRNAs plasma profiles in vascular dementia: biomolecular data and biomedical implications. Front Cell Neurosci. 2016;10:51. [10] BARBAGALLO C, MOSTILE G, BAGLIERI G, et al. Specific signatures of serum mirnas as potential biomarkers to discriminate clinically similar neurodegenerative and vascular-related diseases. Cell Mol Neurobiol. 2019; 40(4):531-546 [11] ZHENG Y, WANG L, CHEN M, et al. Upregulation of miR-130b protects against cerebral ischemic injury by targeting water channel protein aquaporin 4 (AQP4). Am J Transl Res. 2017;9(7):3452-3461. [12] WANG P, LIANG X, LU Y, et al. MicroRNA-93 downregulation ameliorates cerebral ischemic injury through the Nrf2/HO-1 defense pathway. Neurochem Res. 2016;41(10):2627-2635. [13] 周凡萍,人血清microRNAs作为脑卒中后认知功能障碍生物标志物的研究[D].福州:福建中医药大学,2018. [14] 黄墩兵,谷诗浓,王振杰,等.miR-93-5p联合BDNF蛋白检测卒中后认知功能障碍的诊断价值[J].按摩与康复医学,2019,10(9):44-47. [15] DONG H, LI J, HUANG L, et al. Serum MicroRNA Profiles Serve as Novel Biomarkers for the Diagnosis of Alzheimer’s Disease. Dis Markers. 2015; 2015:625659. [16] DAS S, FERLITO M, KENT OA, et al. Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res. 2012;110(12):1596-1603. [17] 张仕娟,刘月华,李乃坤,等.急性脑梗死患者血清miR-181c水平与认知功能受损的关系[J].山东医药,2016,56(38):90-92. [18] 闫小菊,张羽,李勇,等.血清微小RNA-181c、甲基乙二醛和25羟基维生素D_3水平在评估老年高血压患者发生认知功能障碍中的价值[J].中华高血压杂志,2019,27(12):1137-1142. [19] CHEN YL SHEN CK. Modulation of mGluR-dependent MAP1B translation and AMPA receptor endocytosis by microRNA miR-146a-5p. J Neurosci. 2013;33(21):9013-9020. [20] 董瑞,许鑫,陆雅媛,等.术后认知功能障碍小鼠miR-146a表达的变化[J].临床麻醉学杂志,2017,33(10):1016-1020. [21] MULLER M, KUIPERIJ HB, CLAASSEN JA, et al. MicroRNAs in Alzheimer’s disease: differential expression in hippocampus and cell-free cerebrospinal fluid. Neurobiol Aging. 2014;35(1):152-158. [22] MARCHEGIANI F, MATACCHIONE G, RAMINI D, et al. Diagnostic performance of new and classic CSF biomarkers in age-related dementias. Aging (Albany NY). 2019;11(8):2420-2429. [23] YASMEEN S, KAUR S, MIRZA AH, et al. miRNA-27a-3p and miRNA-222-3p as Novel Modulators of Phosphodiesterase 3a (PDE3A) in Cerebral Microvascular Endothelial Cells. Mol Neurobiol. 2019;56(8):5304-5314. [24] OUYANG Y, LI D, WANG H, et al. MiR-21-5p/dual-specificity phosphatase 8 signalling mediates the anti-inflammatory effect of haem oxygenase-1 in aged intracerebral haemorrhage rats. Aging Cell. 2019;18(6):e13022. [25] 欧阳烨彤.miR-21-5p在自发性脑出血患者血清中的表达及其与预后关系的研究[D].南昌:南昌大学,2019. [26] ZHOU J, ZHANG J. Identification of miRNA-21 and miRNA-24 in plasma as potential early stage markers of acute cerebral infarction. Mol Med Rep. 2014;10(2):971-976. [27] SORENSEN SS, NYGAARD ABCHRISTENSEN T. miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia - an exploratory study. Transl Neurodegener. 2016;5:6. [28] 林洋,芮耀诚.脑缺血大鼠脑组织及血浆中microRNA-124a表达的变化[J].中国脑血管病杂志,2011,8(3):143-147. [29] PONOMAREV ED, VEREMEYKO T, BARTENEVA N, et al. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med. 2011;17(1):64-70. [30] SUN M, HOU X, REN G, et al. Dynamic changes in miR-124 levels in patients with acute cerebral infarction. Int J Neurosci. 2019;129(7):649-653. [31] RAJASETHUPATHY P, FIUMARA F, SHERIDAN R, et al. Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron. 2009;63(6):803-817. [32] MALMEVIK J, PETRI R, KNAUFF P, et al. Distinct cognitive effects and underlying transcriptome changes upon inhibition of individual miRNAs in hippocampal neurons. Sci Rep. 2016;6:19879. [33] MIAO W, BAO T-H, HAN J-H, et al. Neuroprotection induced by post-conditioning following ischemia/reperfusion in mice is associated with altered microRNA expression. Mol Med Report. 2016;14(3):2582-2588. [34] YANG TT, LIU CG, GAO SC, et al. The Serum Exosome Derived MicroRNA-135a, -193b, and -384 Were Potential Alzheimer’s Disease Biomarkers. Biomed Environ Sci. 2018;31(2):87-96. [35] PRABHAKAR P, CHANDRA SRCHRISTOPHER R. Circulating microRNAs as potential biomarkers for the identification of vascular dementia due to cerebral small vessel disease. Age Ageing. 2017;46(5):861-864. [36] MA W, FU Q, ZHANG Y, et al. A Single-Nucleotide Polymorphism in 3’-Untranslated Region of Endothelin-1 Reduces Risk of Dementia After Ischemic Stroke. Med Sci Monit. 2016;22:1368-1374. [37] HU XL, WANG XX, ZHU YM, et al. MicroRNA-132 regulates total protein of Nav1.1 and Nav1.2 in the hippocampus and cortex of rat with chronic cerebral hypoperfusion. Behav Brain Res. 2019;366:118-125. [38] OUYANG Y, LI D, WANG H, et al. MiR-21-5p/dual-specificity phosphatase 8 signalling mediates the anti-inflammatory effect of haem oxygenase-1 in aged intracerebral haemorrhage rats. Aging Cell. 2019;18(6):e13022. [39] TOYAMA K, SPIN JM, DENG AC, et al. MicroRNA-Mediated Therapy Modulating Blood-Brain Barrier Disruption Improves Vascular Cognitive Impairment. Arterioscler Thromb Vasc Biol. 2018;38(6):1392-1406. [40] VAN DEN BERG MMJ, KRAUSKOPF J, RAMAEKERS JG, et al. Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog Neurobiol. 2020;185:101732. [41] WANG Z, LU G, SZE J, et al. Plasma miR-124 Is a Promising Candidate Biomarker for Human Intracerebral Hemorrhage Stroke. Mol Neurobiol. 2018;55(7):5879-5888. [42] TSAI PC, LIAO YC, WANG YS, et al. Serum microRNA-21 and microRNA-221 as potential biomarkers for cerebrovascular disease. J Vasc Res. 2013;50(4): 346-354. |
[1] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
[2] | Zhang Chao, Lü Xin. Heterotopic ossification after acetabular fracture fixation: risk factors, prevention and treatment progress [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1434-1439. |
[3] | Zhou Jihui, Li Xinzhi, Zhou You, Huang Wei, Chen Wenyao. Multiple problems in the selection of implants for patellar fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1440-1445. |
[4] | Wang Debin, Bi Zhenggang. Related problems in anatomy mechanics, injury characteristics, fixed repair and three-dimensional technology application for olecranon fracture-dislocations [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1446-1451. |
[5] | Gu Xia, Zhao Min, Wang Pingyi, Li Yimei, Li Wenhua. Relationship between hypoxia inducible factor 1 alpha and hypoxia signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1284-1289. |
[6] | Ji Zhixiang, Lan Changgong. Polymorphism of urate transporter in gout and its correlation with gout treatment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1290-1298. |
[7] | Wang Mengting, Gu Yanping, Ren Wenbo, Qin Qian, Bai Bingyi, Liao Yuanpeng. Research hotspots of blood flow restriction training for dyskinesia based on visualization analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1264-1269. |
[8] | Wang Xianyao, Guan Yalin, Liu Zhongshan. Strategies for improving the therapeutic efficacy of mesenchymal stem cells in the treatment of nonhealing wounds [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1081-1087. |
[9] | Wan Ran, Shi Xu, Liu Jingsong, Wang Yansong. Research progress in the treatment of spinal cord injury with mesenchymal stem cell secretome [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1088-1095. |
[10] | Liao Chengcheng, An Jiaxing, Tan Zhangxue, Wang Qian, Liu Jianguo. Therapeutic target and application prospects of oral squamous cell carcinoma stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1096-1103. |
[11] | Zhao Min, Feng Liuxiang, Chen Yao, Gu Xia, Wang Pingyi, Li Yimei, Li Wenhua. Exosomes as a disease marker under hypoxic conditions [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1104-1108. |
[12] | Xie Wenjia, Xia Tianjiao, Zhou Qingyun, Liu Yujia, Gu Xiaoping. Role of microglia-mediated neuronal injury in neurodegenerative diseases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1109-1115. |
[13] | Li Shanshan, Guo Xiaoxiao, You Ran, Yang Xiufen, Zhao Lu, Chen Xi, Wang Yanling. Photoreceptor cell replacement therapy for retinal degeneration diseases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1116-1121. |
[14] | Jiao Hui, Zhang Yining, Song Yuqing, Lin Yu, Wang Xiuli. Advances in research and application of breast cancer organoids [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1122-1128. |
[15] | Wang Shiqi, Zhang Jinsheng. Effects of Chinese medicine on proliferation, differentiation and aging of bone marrow mesenchymal stem cells regulating ischemia-hypoxia microenvironment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1129-1134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||