Chinese Journal of Tissue Engineering Research ›› 2021, Vol. 25 ›› Issue (7): 1109-1115.doi: 10.3969/j.issn.2095-4344.2178
Previous Articles Next Articles
Xie Wenjia1, 2, Xia Tianjiao1, 2, Zhou Qingyun1, Liu Yujia1, Gu Xiaoping1
Received:
2020-03-20
Revised:
2020-03-21
Accepted:
2020-04-11
Online:
2021-03-08
Published:
2020-12-09
Contact:
Gu Xiaoping, MD, Chief physician, Doctoral supervisor, Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
About author:
Xie Wenjia, Master candidate, Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, Jiangsu Province, China
Supported by:
CLC Number:
Xie Wenjia, Xia Tianjiao, Zhou Qingyun, Liu Yujia, Gu Xiaoping. Role of microglia-mediated neuronal injury in neurodegenerative diseases[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1109-1115.
2.1 小胶质细胞感知失调与神经退行性疾病 小胶质细胞用近百个基因的产物来感知微环境的变化,它们通过髓样细胞触发受体2、嘌呤能受体、受体酪氨酸激酶等特定感知神经元损伤,作出适当的应答[5]。髓样细胞触发受体2、嘌呤能受体等在神经退行性疾病中表达下调,小胶质细胞感知毒性物质的能力下降,对毒性物质的清除随之减少。以阿尔茨海默病为例,β淀粉样蛋白异常沉积是其重要病理特征,这种具有神经毒性的蛋白抑制大脑长时程增强作用,通过酪氨酸蛋白激酶Fyn等信号通路过度提高细胞兴奋性或破坏轴突运输和微管功能导致神经元死亡[6]。尽管小胶质细胞的感知失调是否与阿尔茨海默病发生有关尚无定论,但其推动β淀粉样蛋白沉积,促炎细胞因子和小胶质细胞激活随之增多加重神经元或髓鞘的丧失,促进阿尔茨海默病的发生。毒性物质、细胞碎片等累积继而使小胶质细胞感知过度,造成不必要的神经元损伤。活化的小胶质细胞释放活性氧,激活磷脂促翻转酶,抑制内翻酶,使神经元磷脂酰丝氨酸外露增加,通过Mer受体酪氨酸激酶等激活吞噬作用[7]。 2.2 小胶质细胞管家功能异常与神经退行性疾病 小胶质细胞感知微环境的变化后,通过趋化、吞噬等管家功能发挥效应,最终达到维持稳态的目的。管家功能基因包括编码趋化因子和趋化因子受体的基因、参与吞噬作用的基因和星形胶质细胞相关的基因[1]。管家功能异常在神经退行性疾病的神经元损伤中起重要作用。 2.2.1 小胶质细胞趋化因子和趋化因子受体作用失调 在中枢神经系统中,小胶质细胞分泌细胞因子趋化外周免疫细胞,改变小胶质细胞的表型或直接杀伤退行性变神经元。体外和体内研究表明,β淀粉样蛋白等神经退行性疾病中累积的毒性物质能刺激小胶质细胞释放白细胞介素1β和肿瘤坏死因子α,促进内皮细胞产生趋化因子C-X-C基元配体8,与T淋巴细胞富集趋化因子C-X-C基元受体2结合,促进T淋巴细胞完成包括血脑屏障在内的跨内皮屏障迁移。进入大脑的T淋巴细胞可通过分泌γ-干扰素改变小胶质细胞表型,提高其运动能力和吞噬活性。缺乏T淋巴细胞和B淋巴细胞的免疫缺陷模型重组激活基因1和重组激活基因2敲除的小鼠与野生型小鼠相比,认知能力更差,β淀粉样蛋白斑块沉积增加[8],这提示阿尔茨海默病中小胶质细胞可能趋化T淋巴细胞协同清除β淀粉样蛋白斑块。但被趋化而来的T淋巴细胞是否保护神经元尚不明确,研究显示CD8+T淋巴细胞可能通过分泌穿孔素、颗粒酶等促进受损或受感染细胞的凋亡,损伤认知并减少小胶质细胞激活。除淋巴细胞外,小胶质细胞还可通过白细胞介素1β和趋化因子C-X-C基元配体1招募中性粒细胞[9],促进炎症和吞噬作用。 小胶质细胞可通过趋化因子受体被招募以清除异常成分,而抑制招募可以降低小胶质细胞的数量从而减少神经元损伤。在阿尔茨海默病模型5xFAD小鼠中,阻断集落刺激因子1受体可消除约80%小胶质细胞,达到逆转树突棘的丢失、防治神经元损伤并改善记忆的效果,而对β淀粉样蛋白斑块或tau蛋白沉积没有影响[10],这说明阿尔茨海默病中小胶质细胞被过度招募,实际发挥限制退行性变作用的小胶质细胞仅占少数,而多数则表现为过度的吞噬、神经炎症等,推进阿尔茨海默病。此外,趋化因子如嗜酸性粒细胞趋化因子[11],趋化因子受体如趋化因子受体3[12],也在趋化小胶质细胞中发挥作用。 2.2.2 小胶质细胞吞噬作用紊乱 在神经退行性疾病中,小胶质细胞行使正常功能时因受到毒性物质干扰而导致放大的炎症反应和神经毒性(如清道夫受体、突触修剪),或由于特定基因的突变而出现吞噬功能失调(如髓样细胞触发受体2、反式激活应答DNA结合蛋白43、颗粒蛋白前体),均可促进神经元损伤并进一步加重神经退行性疾病。 (1)小胶质细胞清道夫受体放大神经毒性:清道夫受体是一种固有免疫的模式识别受体,促进非我或异变自我的配体的去除,消除被降解的或有害的物质。当感知到异常或错误折叠的蛋白质时,小胶质细胞试图通过清道夫受体和其他模式识别受体清除这些物质,但源源不断的异常物质干扰小胶质细胞正常功能,放大促炎反应和神经毒性[1]。以阿尔茨海默病为例,β淀粉样蛋白清除不足使其发挥神经毒性并推动神经退行性疾病发展,且持续激活小胶质细胞加重神经退行性疾病中的神经元病变。清道夫受体B2是小胶质细胞的β淀粉样蛋白受体,它与Toll样受体4和Toll样受体6形成复合物,导致细胞因子分泌、趋化因子释放、活性氧产生、小胶质细胞迁移和炎性小体激活而损伤神经元[13]。β淀粉样蛋白还可与清道夫受体J1结合,激活丝裂原活化蛋白激酶和核因子κB,并通过白细胞介素1β诱导突触功能障碍甚至细胞凋亡[14]。凝集素样氧化型低密度脂蛋白受体1也是清道夫受体的一员,能够加重神经炎症诱导的神经元凋亡,与丝裂原活化蛋白激酶和核因子κB联动促进神经炎症和神经元损伤的恶性循环[15]。值得注意的是,并非所有清道夫受体参与功能紊乱。清道夫受体A1是环绕β淀粉样蛋白斑块的小胶质细胞表达的β淀粉样蛋白吞噬受体,上调清道夫受体A1可减轻β淀粉样蛋白负荷,改善β淀粉样蛋白神经毒性[16]。 (2)小胶质细胞髓样细胞触发受体2突变减弱神经保护作用:髓样细胞触发受体2是一种表达于髓系细胞且主要表达于小胶质细胞的免疫受体,可与β淀粉样蛋白、载脂蛋白E、磷脂酰丝氨酸、死亡的神经元和受损的髓鞘等配体结合,通过受体蛋白DNAX-活化蛋白12抑制促炎因子的产生,促进吞噬和趋化[1, 17]。在阿尔茨海默病模型5xFAD鼠中,敲除髓样细胞触发受体2减少小胶质细胞的激活和在β淀粉样蛋白斑块周围的聚集[18],髓样细胞触发受体2突变体如R47H也使得小胶质细胞增生受阻[19],出现β淀粉样蛋白斑块增多等病理改变,而过表达髓样细胞触发受体2则减少斑块并上调吞噬功能基因,改善阿尔茨海默病小鼠的神经病理和行为学障碍[20]。髓样细胞触发受体2也可被α-去整合素金属蛋白酶10或17裂解为可溶性髓样细胞触发受体2[21],通过小胶质细胞发挥神经保护作用[22],但前提是髓样细胞触发受体2未发生突变。当神经退行性疾病中出现髓样细胞触发受体2突变,小胶质细胞激活减少,吞噬和趋化能力降低,促炎因子大量产生,β淀粉样蛋白等神经毒性物质累积,促进神经退行性变的同时改变神经元的兴奋性和极性而损伤神经元。需要注意的是,阿尔茨海默病、帕金森病、肌萎缩性脊髓侧索硬化症、额颞叶痴呆等神经退行性疾病中蛋白质稳态被破坏,泛素-蛋白酶体等清除毒性蛋白系统出现缺陷,共同参与神经毒性蛋白沉积[23],即毒性蛋白的沉积是多方作用的结果,但该文章聚焦于小胶质细胞。 (3)小胶质细胞反式激活应答DNA结合蛋白43突变促进过度吞噬:反式激活应答DNA结合蛋白43失调是肌萎缩性脊髓侧索硬化症和额颞叶痴呆等神经退行性疾病的常见下游机制,它的正常功能主要与RNA通路有关,如调节信使RNA前体的剪接、维持信使RNA的稳定、调节信使RNA的转运、处理微小RNA前体、与单链DNA结合抑制转录、在应激状态下隔离和保护信使RNA[24]。反式激活应答DNA结合蛋白43是小胶质细胞吞噬作用的强调控因子。小胶质细胞中缺乏该蛋白的阿尔茨海默病模型小鼠的β淀粉样蛋白负荷降低,突触明显减少,且在没有β淀粉样蛋白的情况下突触也减少[25],提示该蛋白突变在神经退行性疾病中主要通过小胶质细胞的过度吞噬损伤神经元,促进神经变性。另外,鉴于反式激活应答DNA结合蛋白43的功能众多,其正常功能的丢失也会促成神经元的退行性变。 (4)小胶质细胞颗粒蛋白前体营养和保护功能缺失:颗粒蛋白前体是一种具有神经免疫调节功能和自分泌神经营养功能的分泌糖蛋白,对长期神经元生存有重要作用。颗粒蛋白前体缺失没有加剧β淀粉样蛋白的病理改变,反而显著减少β淀粉样蛋白的扩散,这部分归功于颗粒蛋白前体缺失后小胶质细胞吞噬功能的增强,但会增加tau病变[26]。缺乏颗粒蛋白前体的阿尔茨海默病模型APP/PS1小鼠还表现出较轻的轴突营养不良和部分改善的行为表型,但仍通过突触修剪等其他机制加剧神经损伤[27]。颗粒蛋白前体缺乏导致年龄依赖的进行性的溶酶体基因和固有免疫基因的上调,补体产生增加,小胶质细胞C1q依赖的突触修剪加强,提示颗粒蛋白前体是抑制衰老过程中异常小胶质细胞激活的重要免疫检查点[1, 26]。 (5)病理状态下小胶质细胞突触修剪过度:突触修剪这种极具选择性的吞噬作用被认为由补体C1q、C3和C4沉积介导,它们标记目标突触以供小胶质细胞的受体识别,从而清除该突触[2, 28]。大脑在β淀粉样蛋白斑块形成前即出现吞噬性小胶质细胞的区域特异性增加以及C1q和C3在突触上的累积,在β淀粉样蛋白寡聚体的诱导下小胶质细胞通过补体途径激活而过度发挥突触修剪作用导致神经元受损。抑制C1q、C3或C3受体活性可以挽救突触丢失和功能障碍[29],但不排除β淀粉样蛋白寡聚体和C1q通过其他机制如主要组织相容性复合体Ⅰ/配对免疫球蛋白样受体B造成突触丢失[30-31]。 值得注意的是,突触障碍和丢失远在神经病理和认知受损之前出现并伴随全程。 除补体相关的突触修剪外,小胶质细胞选择性表达的不规则趋化因子C-X3-C基元受体1可诱导小胶质细胞介导的突触消除,其配体趋化因子C-X3-C基元配体1缺陷小鼠在突触消除方面存在严重障碍[32]。神经元上的趋化因子C-X3-C基元配体1和小胶质细胞上的趋化因子C-X3-C基元受体1的相互作用调节小胶质细胞稳态功能,缓和小胶质细胞对炎症和损伤刺激的反应。在神经元中,这些相互作用调节突触成熟并促进神经元存活,阻断这种相互作用则会上调小胶质细胞肿瘤坏死因子生成,引起神经毒性[1]。此外,作为小胶质细胞的免疫检查点之一,趋化因子C-X3-C基元受体1缺陷使小胶质细胞对原纤维状β淀粉样蛋白的吞噬作用增强,提示该受体抑制吞噬小胶质细胞的过度吞噬[33],功能失调可引发或加剧神经退行性变。 突触亦可表达“don’t eat me”信号如CD47,作用于小胶质细胞信号调节蛋白α,抑制突触的修剪[34]。在帕金森病模型中,信号调节蛋白α不足导致小胶质细胞异常的炎症反应和吞噬活动,进一步加快多巴胺能神经元的退行性变[35]。 (6)小胶质细胞其他与吞噬相关的作用:在神经退行性疾病中还有其他调节吞噬功能的标志物,如上调的CD33、下调的CD200和自噬相关通路。位于髓样细胞触发受体2上游的CD33在阿尔茨海默病小胶质细胞中表达增多,而敲除CD33的阿尔茨海默病模型APP/PS1鼠抑制小胶质细胞摄入和清除β淀粉样蛋白42,减少斑块沉积,改善记忆保持[17],这表明CD33参与小胶质细胞清除能力的丧失,导致β淀粉样蛋白等神经毒性物质累积而损伤神经元。CD200可加强小胶质细胞对β淀粉样蛋白的清除[36],减少小胶质细胞激活并促进炎症反应和神经退行性变。自噬途径中某些蛋白的表达随着年龄的增长而下降,可能影响阿尔茨海默病等疾病的神经退行性变。研究显示,小胶质细胞中缺乏微管相关蛋白1轻链3相关内吞作用的阿尔茨海默病小鼠表现出加速的神经变性、受损的神经元信号和记忆缺陷。在髓系细胞或仅仅小胶质细胞中缺乏微管相关蛋白1轻链3相关内吞作用但不缺乏典型自噬的小鼠,其海马中促炎细胞因子的产生和神经毒性β淀粉样蛋白的水平显著升高,这种炎症与β淀粉样蛋白沉积、反应性小胶质细胞增生和tau蛋白过度磷酸化有关[37]。 2.2.3 小胶质细胞与星形胶质细胞相互作用 星形胶质细胞功能障碍的延长和小胶质细胞的激活加速帕金森病模型小鼠黑质多巴胺神经元的退行性变[38]。神经炎症可能引起神经元退行性变,小胶质细胞与星形胶质细胞相互作用起放大效应。在多种神经疾病中,小胶质细胞被经典炎症递质激活,将星形胶质细胞转化为具有神经毒性的A1表型,通过A1型星形胶质细胞传播神经元死亡,其中大部分由小胶质细胞释放线粒体碎片或功能障碍的线粒体介导[39]。活化的星形胶质细胞也可分泌肿瘤坏死因子α、巨噬细胞集落刺激因子等反作用于小胶质细胞使其激活,并产生活性氧和活性氮物质诱导神经元的凋亡或坏死[40]。 2.3 小胶质细胞防御功能紊乱与神经退行性疾病 小胶质细胞表达Fc受体、Toll样受体、病毒受体和抗菌肽,接受刺激后引发神经炎症反应,产生肿瘤坏死因子、白细胞介素1等细胞因子、蛋白酶、超氧化物等以清除有害物质并保护神经元,且能通过趋化因子招募更多细胞,但神经炎症也可不招募循环中的白细胞而局限于小胶质细胞[1]。小胶质细胞介导的神经炎症是神经退行性变的重要机制之一。失控或慢性的神经炎症和持久的小胶质细胞激活导致细胞因子的过度和异常产生,这些因子阻止神经修复并导致突触损伤、氧化损伤和线粒体功能障碍[3],诱导神经退行性变并推动神经退行性疾病的发生和发展。 2.3.1 小胶质细胞相关细胞因子介导的宿主防御紊乱 活化的小胶质细胞释放的促炎因子在体内和体外均能导致神经元死亡[40]。肿瘤坏死因子α通过激活半胱氨酸蛋白酶8诱导程序性细胞凋亡,或在半胱氨酸蛋白酶8未激活的情况下激活受体相互作用蛋白1、受体相互作用蛋白3和混合系列蛋白激酶样结构域引起程序性细胞坏死,或通过核因子κB诱导炎症并抑制细胞凋亡[41],这3个途径的相对强度决定了肿瘤坏死因子α存在下神经元的结局。但是,肿瘤坏死因子α仅在小胶质细胞或小胶质细胞激活后产物存在的情况下诱导神经元死亡,这可能与小胶质细胞诱导神经元凋亡的Fas配体有关。肿瘤坏死因子α还可诱导神经元表达和释放谷氨酰胺酶,使胞外谷氨酸水平升高,过度激活谷氨酸的N-甲基-D-天冬氨酸受体导致兴奋性毒性神经元死亡[42],其他促炎因子如白细胞介素1β同样不直接作用于神经元,而是放大炎症反应使其他小胶质细胞和星形胶质细胞释放直接对神经元产生毒性的因子[43]。此外,干扰素基因刺激蛋白可诱导促炎细胞因子和Ⅰ型干扰素的生成,发挥神经毒性。在毛细血管扩张性共济失调症这一神经退行性疾病中,细胞质中单链和双链DNA的累积激活小胶质细胞的固有免疫应答,激活干扰素基因刺激蛋白、黑素瘤缺乏因子2炎性小体、核因子κB并释放白细胞介素1β[44]。在帕金森病中,小胶质细胞还可通过释放乳铁蛋白和核因子κB干扰铁代谢而影响神经元[45]。慢性神经退行性变也可通过干扰素基因刺激蛋白诱导Ⅰ型干扰素的合成,进而影响小胶质细胞表型并加速神经退行性变进展,而敲除干扰素基因刺激蛋白和Ⅰ型干扰素受体后肿瘤坏死因子α、C3、髓样细胞触发受体2等转录均减少[46]。这些细胞因子不仅影响周围的神经元、星形胶质细胞和少突胶质细胞,加重tau病理,导致神经退行性变和神经元丢失,还反过来维持小胶质细胞的激活形成恶性循环而最终损伤小胶质细胞使其衰竭。 2.3.2 小胶质细胞释放蛋白酶损伤神经元 小胶质细胞激活释放的半胱氨酸蛋白酶等蛋白酶具有神经毒性。小胶质细胞内的炎性小体被损伤相关分子模式、病原相关分子模式或细胞因子启动并激活,产生半胱氨酸蛋白酶1、半胱氨酸蛋白酶4、半胱氨酸蛋白酶5、半胱氨酸蛋白酶11、消皮素D、白细胞介素1β和白细胞介素18等[47-48],分别对神经产生毒性作用并可引起细胞凋亡和细胞焦亡,还可通过诱导体内其他促炎递质以自分泌的形式放大神经毒性。核苷酸结合寡聚化结构域样受体蛋白3炎性小体功能的缺失通过调节tau激酶和磷酸酶来减少tau的过度磷酸化和聚集[49],且经典的炎性小体或半胱氨酸蛋白酶1缺失的阿尔茨海默病模型小鼠表现明显下降的β淀粉样蛋白沉积和明显改善的认知障碍[50],该认知功能障碍的改善和行为的正常化归功于长时程增强作用的恢复,这提示记忆的形成和神经棘形态的保留,而半胱氨酸蛋白酶具有相反作用。此外,组织蛋白酶B和金属蛋白酶也推动神经元损伤和死亡[7]。 2.3.3 小胶质细胞释放超氧化物损伤神经元 小胶质细胞表达吞噬细胞烟酰胺腺嘌呤二核苷酸磷酸氧化酶。该酶在受到肿瘤坏死因子α、白细胞介素1β、趋化因子、花生四烯酸、β淀粉样蛋白、内毒素、腺嘌呤核苷三磷酸或吞噬作用等剧烈刺激时装配并活化,在胞外或吞噬体中产生高水平的超氧化物,这些超氧化物被胞外超氧化物歧化酶催化分解成过氧化氢,过氧化氢进一步激活小胶质细胞使其表达诱导型一氧化氮合酶进而产生一氧化氮,一氧化氮再与超氧化物反应生成过氧亚硝酸盐[7]。这些活性氧物质帮助小胶质细胞消除应激源,但也损伤神经元。此外,高水平的一氧化氮可通过快速抑制线粒体呼吸、缓慢抑制糖酵解、改变线粒体通透性或激活聚腺苷二磷酸核糖聚合酶使神经元的能源耗竭而坏死[51]。即使能量维持尚可,一氧化氮能通过氧化激活p53、p38、丝裂原活化蛋白激酶通路或内质网应激诱导细胞凋亡。一氧化氮还可抑制线粒体呼吸,促使神经元去极化和释放谷氨酸,共同激活N-甲基-D-天冬氨酸受体,导致兴奋性毒性神经元死亡[52]。帕金森病模型小鼠的中脑黑质部位小胶质细胞的激活使氧化应激反应增强,可能是帕金森病的重要机制之一[53]。 2.3.4 疾病相关小胶质细胞限制神经退行性变 疾病相关小胶质细胞是一种表达特定小胶质细胞标记的免疫细胞,由小胶质细胞先转化为中间态再经髓样细胞触发受体2途径两步转化而来,保护大脑免受神经退行性变[1]。在疾病相关小胶质细胞转化过程中,趋化因子C-X3-C基元受体1、嘌呤能受体P2RY12的表达下调,髓样细胞触发受体2相关的DNAX-活化蛋白12和载脂蛋白E的表达上调,溶酶体、吞噬和脂代谢途径相关的如半胱氨酸蛋白酶抑制剂7的表达上调[5],限制退行性变进展且不损伤正常神经元。 2.3.5 小胶质细胞其他宿主防御失调致神经退行性变的机制 其他机制如血脑屏障、生物钟、脑-肠轴和中枢神经系统相关巨噬细胞,也可能在宿主防御中发挥独特作用。慢性神经炎症可导致血脑屏障的破坏,血脑屏障本身可启动神经退行性机制[54],需要小胶质细胞的嘌呤能受体P2RY12关闭破损的血脑屏障[55],但该受体在神经退行性疾病中表达下调。小胶质细胞和星形胶质细胞的生物钟也可能参与血脑屏障改变、炎症和突触功能[56]。清除肠道微生物群能改变小胶质细胞数量、大小、转录组和感知功能,并下调宿主防御基因[57]。肠道微生态的失调增加脑内神经炎症和β淀粉样蛋白沉积,加重神经元损伤[58]。中枢神经系统相关巨噬细胞也在神经退行性变中发挥作用,如血管周围巨噬细胞沿着血管迁移至β淀粉样蛋白沉积处,清除和吞噬脑脊液中的β淀粉样蛋白,还能分泌多种促炎细胞因子[59]。除表现出过度的神经炎症外,机体抑制炎症的信号也会上调,如在阿尔茨海默病等神经退行性疾病患者的脑脊液中,转化生长因子β水平升高,调节小胶质细胞的功能和状态[60],当整体的促炎效应超过抑炎效应则神经元损伤不可避免。"
[1] HICKMAN S, IZZY S, SEN P, et al. Microglia in neurodegeneration. Nat Neurosci. 2018; 21(10): 1359-1369. [2] BEGGS S, SALTER MW. SnapShot: microglia in disease. Cell. 2016; 165(5): 1294-1294.e1. [3] BRIGHT F, WERRY EL, DOBSON-STONE C, et al. Neuroinflammation in frontotemporal dementia. Nat Rev Neurol. 2019;15(9): 540-555. [4] BIBER K, OWENS T, BODDEKE E. What is microglia neurotoxicity (not). Glia. 2014; 62(6): 841-854. [5] DECZKOWSKA A, KEREN-SHAUL H, WEINER A, et al. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell. 2018; 173(5): 1073-1081. [6] VIOLA KL, KLEIN WL. Amyloid beta oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol. 2015; 129(2): 183-206. [7] BROWN GC, VILALTA A. How microglia kill neurons. Brain Res. 2015; 1628(Pt B): 288-297. [8] CRUZ HERNÁNDEZ JC, BRACKO O, KERSBERGEN CJ, et al. Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models. Nat Neurosci. 2019; 22(3): 413-420. [9] DRUMMOND RA, SWAMYDAS M, OIKONOMOU V, et al. CARD9(+) microglia promote antifungal immunity via IL-1beta- and CXCL1-mediated neutrophil recruitment. Nat Immunol. 2019; 20(5): 559-570. [10] SPANGENBERG EE, LEE RJ, NAJAFI AR, et al. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-beta pathology. Brain. 2016; 139(Pt 4): 1265-1281. [11] PARAJULI B, HORIUCHI H, MIZUNO T, et al. CCL11 enhances excitotoxic neuronal death by producing reactive oxygen species in microglia. Glia. 2015; 63(12): 2274-2284. [12] ZHU C, XU B, SUN X, et al. Targeting CCR3 to reduce amyloid-β production, tau hyperphosphorylation, and synaptic loss in a mouse model of Alzheimer’s disease. Mol Neurobiol. 2017; 54(10): 7964-7978. [13] EL KHOURY JB, MOORE KJ, MEANS TK, et al. CD36 mediates the innate host response to beta-amyloid. J Exp Med. 2003; 197(12): 1657-1666. [14] ORIGLIA N, BONADONNA C, ROSELLINI A, et al. Microglial receptor for advanced glycation end product-dependent signal pathway drives beta-amyloid-induced synaptic depression and long-term depression impairment in entorhinal cortex. J Neurosci. 2010; 30(34): 11414-11425. [15] GE X, ZHANG DM, LI MM, et al. Microglial LOX-1/MAPKs/NF-kappaB positive loop promotes the vicious cycle of neuroinflammation and neural injury. Int Immunopharmacol. 2019; 70: 187-200. [16] CORNEJO F, VRUWINK M, METZ C, et al. Scavenger Receptor-A deficiency impairs immune response of microglia and astrocytes potentiating Alzheimer’s disease pathophysiology. Brain Behav Immun. 2018; 69: 336-350. [17] GRICIUC A, PATEL S, FEDERICO AN, et al. TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer’s disease. Neuron. 2019; 103(5): 820-835.e7. [18] WANG Y, ULLAND TK, ULRICH JD, et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J Exp Med. 2016; 213(5): 667-675. [19] SONG WM, JOSHITA S, ZHOU Y, et al. Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism. J Exp Med. 2018; 215(3): 745-760. [20] LEE CYD, DAGGETT A, GU X, et al. Elevated TREM2 gene dosage reprograms microglia responsivity and ameliorates pathological phenotypes in Alzheimer’s disease models. Neuron. 2018; 97(5): 1032-1048. e5. [21] SCHLEPCKOW K, KLEINBERGER G, FUKUMORI A, et al. An Alzheimer-associated TREM2 variant occurs at the ADAM cleavage site and affects shedding and phagocytic function. EMBO Mol Med. 2017; 9(10): 1356-1365. [22] ZHONG L, XU Y, ZHUO R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model. Nat Commun. 2019; 10(1): 1365. [23] BOLAND B, YU WH, CORTI O, et al. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2018; 17(9): 660-688. [24] LEE EB, LEE VM, TROJANOWSKI JQ. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci. 2011; 13(1): 38-50. [25] PAOLICELLI RC, JAWAID A, HENSTRIDGE CM, et al. TDP-43 depletion in microglia promotes amyloid clearance but also induces synapse loss. Neuron. 2017; 95(2): 297-308.e6. [26] TAKAHASHI H, KLEIN ZA, BHAGAT SM, et al. Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathol. 2017; 133(5): 785-807. [27] LUI H, ZHANG J, MAKINSON SR, et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell. 2016; 165(4): 921-935. [28] LEMKE G. How macrophages deal with death. Nat Rev Immunol. 2019; 19(9): 539-549. [29] HONG S, BEJA-GLASSER VF, NFONOYIM BM, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016; 352(6286): 712-716. [30] KIM T, VIDAL GS, DJURISIC M, et al. Human LilrB2 is a beta-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer’s model. Science. 2013; 341(6152): 1399-1404. [31] LEE H, BROTT BK, KIRKBY LA, et al. Synapse elimination and learning rules co-regulated by MHC class I H2-Db. Nature. 2014; 509(7499): 195-200. [32] GUNNER G, CHEADLE L, JOHNSON KM, et al. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nat Neurosci. 2019; 22(7): 1075-1088. [33] LIU Z, CONDELLO C, SCHAIN A, et al. CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-β phagocytosis. J Neurosci. 2010; 30(50): 17091-17101. [34] RIVEST S. A ‘don’t eat me’ immune signal protects neuronal connections. Nature. 2018; 563(7729): 42-43. [35] WANG J, DING X, WU X, et al. SIRPalpha deficiency accelerates the pathologic process in models of Parkinson disease. Glia. 2019; 67(12): 2343-2359. [36] VARNUM MM, KIYOTA T, INGRAHAM KL, et al. The anti-inflammatory glycoprotein, CD200, restores neurogenesis and enhances amyloid phagocytosis in a mouse model of Alzheimer’s disease. Neurobiol Aging. 2015; 36(11): 2995-3007. [37] HECKMANN BL, TEUBNER BJW, TUMMERS B, et al. LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s Disease. Cell. 2019; 178(3): 536-551.e14. [38] KUTER K, OLECH L, GLOWACKA U. Prolonged dysfunction of astrocytes and activation of microglia accelerate degeneration of dopaminergic neurons in the rat substantia nigra and block compensation of early motor dysfunction induced by 6-OHDA. Mol Neurobiol. 2018; 55(4): 3049-3066. [39] JOSHI AU, MINHAS PS, LIDDELOW SA, et al. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci. 2019; 22(10): 1635-1648. [40] GLASS CK, SAIJO K, WINNER B, et al. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010; 140(6): 918-934. [41] CHRISTOFFERSON DE, LI Y, YUAN J. Control of life-or-death decisions by RIP1 kinase. Annu Rev Physiol. 2014; 76(1): 129-150. [42] YE L, HUANG Y, ZHAO L, et al. IL-1β and TNF-α induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem. 2013; 125(6): 897-908. [43] MCNAMEE EN, RYAN KM, KILROY D, et al. Noradrenaline induces IL-1ra and IL-1 type II receptor expression in primary glial cells and protects against IL-1beta-induced neurotoxicity. Eur J Pharmacol. 2010; 626 (2-3): 219-228. [44] FERRO A, SHEELER C, CVETANOVIC M. Microglial self-recognition STINGs in A-T neurodegeneratio. Trends Neurosci. 2019; 42(11): 753-755. [45] 石成奎,陈志强.小胶质细胞对中脑多巴胺能神经元铁代谢的影响及其机制:体外细胞学实验方案[J].中国组织工程研究,2017, 21(8):1262-1267. [46] NAZMI A, FIELD RH, GRIFFIN EW, et al. Chronic neurodegeneration induces type I interferon synthesis via STING, shaping microglial phenotype and accelerating disease progression. Glia. 2019; 67(7): 1254-1276. [47] SWANSON KV, DENG M, TING JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019; 19(8): 477-489. [48] GOLDMANN T, TAY TL, PRINZ M. Love and death: microglia, NLRP3 and the Alzheimer’s brain. Cell Res. 2013; 23(5): 595-596. [49] ISING C, VENEGAS C, ZHANG S, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019; 575(7784): 669-673. [50] HENEKA MT, KUMMER MP, STUTZ A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013; 493(7434): 674-678. [51] BROWN GC. Nitric oxide and neuronal death. Nitric Oxide. 2010; 23(3): 153-165. [52] BAL-PRICE A, BROWN GC. Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci. 2001; 21(17): 6480-6491. [53] 陆明佳,王珊珊,朱沂.小胶质细胞介导帕金森病小鼠的氧化应激损伤[J].中国组织工程研究,2013,17(11):2001-2006. [54] SWEENEY MD, SAGARE AP, ZLOKOVIC BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018; 14(3): 133-150. [55] LOU N, TAKANO T, PEI Y, et al. Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier. Proc Natl Acad Sci U S A. 2016; 113(4): 1074-1079. [56] LENG Y, MUSIEK ES, HU K, et al. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 2019; 18(3): 307-318. [57] ERNY D, HRABE DE ANGELIS AL, JAITIN D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015; 18(7): 965-977. [58] D’ARGENIO V, SARNATARO D. Microbiome Influence in the Pathogenesis of Prion and Alzheimer’s Diseases. Int J Mol Sci. 2019;20(19):4704. [59] KIERDORF K, MASUDA T, JORDÃO MJC, et al. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat Rev Neurosci. 2019; 20(9): 547-562. [60] HAMMOND TR, MARSH SE, STEVENS B. Immune signaling in neurodegeneration. Immunity. 2019; 50(4): 955-974. |
[1] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
[2] | Lin Qingfan, Xie Yixin, Chen Wanqing, Ye Zhenzhong, Chen Youfang. Human placenta-derived mesenchymal stem cell conditioned medium can upregulate BeWo cell viability and zonula occludens expression under hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 4970-4975. |
[3] | Zhang Chao, Lü Xin. Heterotopic ossification after acetabular fracture fixation: risk factors, prevention and treatment progress [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1434-1439. |
[4] | Zhou Jihui, Li Xinzhi, Zhou You, Huang Wei, Chen Wenyao. Multiple problems in the selection of implants for patellar fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1440-1445. |
[5] | Wang Debin, Bi Zhenggang. Related problems in anatomy mechanics, injury characteristics, fixed repair and three-dimensional technology application for olecranon fracture-dislocations [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1446-1451. |
[6] | Ji Zhixiang, Lan Changgong. Polymorphism of urate transporter in gout and its correlation with gout treatment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1290-1298. |
[7] | Yuan Mei, Zhang Xinxin, Guo Yisha, Bi Xia. Diagnostic potential of circulating microRNA in vascular cognitive impairment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1299-1304. |
[8] | Zhang Xiumei, Zhai Yunkai, Zhao Jie, Zhao Meng. Research hotspots of organoid models in recent 10 years: a search in domestic and foreign databases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1249-1255. |
[9] | Wang Zhengdong, Huang Na, Chen Jingxian, Zheng Zuobing, Hu Xinyu, Li Mei, Su Xiao, Su Xuesen, Yan Nan. Inhibitory effects of sodium butyrate on microglial activation and expression of inflammatory factors induced by fluorosis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1075-1080. |
[10] | Wang Xianyao, Guan Yalin, Liu Zhongshan. Strategies for improving the therapeutic efficacy of mesenchymal stem cells in the treatment of nonhealing wounds [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1081-1087. |
[11] | Wan Ran, Shi Xu, Liu Jingsong, Wang Yansong. Research progress in the treatment of spinal cord injury with mesenchymal stem cell secretome [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1088-1095. |
[12] | Liao Chengcheng, An Jiaxing, Tan Zhangxue, Wang Qian, Liu Jianguo. Therapeutic target and application prospects of oral squamous cell carcinoma stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1096-1103. |
[13] | Zhao Min, Feng Liuxiang, Chen Yao, Gu Xia, Wang Pingyi, Li Yimei, Li Wenhua. Exosomes as a disease marker under hypoxic conditions [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1104-1108. |
[14] | Li Shanshan, Guo Xiaoxiao, You Ran, Yang Xiufen, Zhao Lu, Chen Xi, Wang Yanling. Photoreceptor cell replacement therapy for retinal degeneration diseases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1116-1121. |
[15] | Jiao Hui, Zhang Yining, Song Yuqing, Lin Yu, Wang Xiuli. Advances in research and application of breast cancer organoids [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1122-1128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||