Chinese Journal of Tissue Engineering Research ›› 2021, Vol. 25 ›› Issue (9): 1440-1445.doi: 10.3969/j.issn.2095-4344.4015
Previous Articles Next Articles
Zhou Jihui, Li Xinzhi, Zhou You, Huang Wei, Chen Wenyao
Received:
2020-03-19
Revised:
2020-03-25
Accepted:
2020-05-09
Online:
2021-03-28
Published:
2020-12-16
About author:
Zhou Jihui, MD, Chief physician, Department of Orthopedics, Renhe Hospital Affiliated to Three Gorges University, the Second Clinical Hospital of Three Gorges University, Yichang 443001, Hubei Province, China
CLC Number:
Zhou Jihui, Li Xinzhi, Zhou You, Huang Wei, Chen Wenyao. Multiple problems in the selection of implants for patellar fracture[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1440-1445.
2.1 髌骨骨折的基本特点 髌骨骨折是骨科的常见创伤,约占全身骨折的1%[2]。作为全身最大的籽骨,髌骨与股四头肌肌腱及髌韧带共同组成伸膝装置,前表面呈弧形隆起维持股四头肌腱延伸部与髌韧带的适当张力,后方形成平面与股骨下段相关节,膝关节屈伸过程中在股骨前方上下滑动,调节伸膝装置的紧张程度。骨折不仅使关节面平整程度受损,同时可导致伸膝装置断裂,使膝关节功能受损。髌骨位置表浅,术中可对其进行全面的显露,使用内植物对其进行充分固定,前弧后平的特殊形态导致了其内植物选择上的多样性,内植物可从多个方向重建髌骨的形态和稳定性[3],在生物力学方面,股四头肌腱和髌韧带的牵张强度是造成分离移位的主要原因,内植物需要有效克服这种趋势,保证在屈膝最大张力时伸膝装置的稳定性,尽早最大限度地恢复膝关节功能。 髌骨骨折的分型方式主要有2种,即 Rock wood 与AO/OTA 分型[4]。其中Rock wood 分型可分为以下几种:Ⅰ型,无移位骨折或关节外骨折;Ⅱ型,髌骨中部骨折,分离移位明显;Ⅲ型,髌骨下部多块骨折;Ⅳ型,无移位的粉碎性骨折;Ⅴ型,粉碎性骨折,移位距离> 5 mm;Ⅵ型,垂直的长线状骨折;Ⅶ型,骨软骨骨折。AO/OTA分型有以下几种:A 型,髌骨关节外骨折;B 型,指部分关节内骨折,伸膝结构保持完整;C 型,关节内骨折,伸膝结构遭到了损坏。多数学者认为骨折移位超过1 cm,关节面台阶超过2 mm者需手术治疗[5],手术方式包括切开复位内固定、微创内固定、外固定、髌骨部分切除及髌骨全部切除,其中髌骨内固定是目前的主流术式,微创内固定是内植物技术改良方向之一,其余术式的相关报道极为少见。对于中部骨折而言,上下骨块均有足够的空间供内植物把持,手术难度相对较低,髌骨下极的骨折可看作髌韧带断裂的特殊形式,固定难度相对较大,对内植物的要求较高。 2.2 手术治疗及内植物的选择 优质的内植物治疗既要考虑髌骨形态及伸膝功能的恢复,又要兼顾髌骨下关节面的平整度。髌骨骨折作为骨科的常见病,内植物方面的研究从未停止,骨科学者取得了很多创新和进步,包括内植物的改良、置入技术的提高、微创化及数字化等,不断推动髌骨骨折的手术治疗向前发展。 2.2.1 固定髌骨骨折的主要内植物 钢丝因其特有的强度和韧性在髌骨骨折内固定手术中作用十分重要,在髌骨骨折内植物中占有十分重要的地位,既可作为单独的内固定物达到治疗目的,又能与其他内固定物联合应用以便更好地发挥作用,对于髌骨中部横行骨折,8字钢丝张力带单独固定可获得良好的效果[6]。众多学者对这种内植物的应用进行了深入的研究,AGARWALA等[7]应用多重钢丝固定技术治疗髌骨骨折,术中共应用三道钢丝,1道深部的环形钢丝从外周环扎进行保护,2道张力带钢丝在髌骨前表面分别行“8”字及“盒形”张力带固定,3道钢丝均在导针指引下穿过股四头肌腱及髌韧带下方,治疗各种类型的髌骨骨折效果良好,其钢丝结均打在髌骨上缘以避免刺激髌韧带,此项技术避免了内固定松动、髌韧带刺激等并发症,允许患者术后早期活动。OH等[8]运用钢丝垂直环扎技术治疗髌骨下极骨折,先以克氏针垂直贯穿髌骨钻孔,由内向外3道钢丝通过隧道贯穿髌骨分别进行环扎固定,为加强下极粉碎性骨折复位后的稳定性,以锚钉或强力缝线对髌韧带锁边缝合后两端自骨隧道穿过髌骨体,在髌骨上方打结进一步加固,此方法简单易行,可重建稳定的伸膝装置,是治疗髌骨下极骨折的可靠方法。 与钢丝相比,缝线及锚钉强度较差,但它们的灵活性具有优势,也被普遍应用为髌骨骨折的手术内植物。缝线可分为可吸收缝线(如爱惜康)及不可吸收缝线(如爱惜邦),主要应用于粉碎骨块之间的复位及稳定,以及髌韧带、股四头肌腱延伸部的缝合修复。陈子秋[9]应用可吸收缝线治疗髌骨骨折,先以克氏针临时固定髌骨,贯穿髌骨上下极纵行钻孔,以硬膜外穿刺针引导1-0 号可吸收爱惜康缝线穿过,再以缝线环绕髌骨边缘荷包连续缝合,拉紧固定,此方法局部刺激小,固定可靠,同时缝线经过抗菌处理,可预防感染,其单独固定的力学强度有待进一步探讨。毕大鹏等[10]使用爱惜邦缝线对髌骨粉碎性骨块进行有效的复位及初步固定,首先对髌骨上部及下部的骨碎块通过隧道横行贯穿复位固定,再环绕碎骨块做环形荷包缝合,为进一步的固定奠定了良好的基础。SHEA等[11]应用“8”字张力带缝线技术治疗髌骨下极骨折,此方法软组织刺激小,手术失效率低,可视稳定程度与其他金属物联合固定。锚钉因对股四头肌腱及髌韧带的加固作用受到骨科医生的青睐,陈羽等[12]应用双锚钉技术治疗髌骨下极粉碎性骨折,2枚锚钉分别以45°斜行打入髌骨上部骨折块下方两侧缘,锚钉相同颜色的缝线在髌骨下极相近部位穿出,在拉紧缝线的过程中产生类似动滑轮装置的力的传导作用,逐渐拉起髌骨下极达到复位目的,缝线打结进行固定,再应用“8”字钢丝张力带进行加固,作者认为单独应用锚钉的固定强度有限,钢丝张力带的作用必不可少,手术对于近端骨折块的骨质条件有一定的要求,近端粉碎者不适合应用,对于严重骨质疏松者也应慎重考虑。 克氏针是髌骨骨折首选的内固定器具之一,其与钢丝结合形成张力带是髌骨骨折的经典术式,髌韧带刺激、克氏针松动失效是常见的并发症。针对其不足之处,许多学者对此项技术进行改良。HAMBRIGHT等[13]应用多重钢丝张力带技术,以垂直于骨折线的方向从多个角度穿入克氏针对骨折形成初步固定,再利用18号钢丝连接形成“8”字形多重多方向张力带装置,对粉碎性骨折形成更加可靠的固定。KYUNG等[14]应用环形尾翼克氏针治疗髌骨骨折,钢丝穿过克氏针尾部环形孔与之形成一体,有效防止了克氏针的松动失效,与传统克氏针比较,内固定松动等并发症明显降低。笪晓伟等[15]将克氏针尾部弯成“P”形并将钢丝从尾部孔道穿过,也可有效防止钢丝及克氏针松动造成的内固定失效。 螺钉通过螺纹结构对骨折块把持力更好,空心螺钉能对骨折形成良好的固定,钢丝从其中空通道穿过形成张力带结构可使固定效果更佳,术中应注意螺钉尖端不能穿过髌骨上缘[16]。Cable-Pin系统由松质骨螺钉及钢缆形成钉缆一体的固定系统,强效固定的同时防止钢丝松脱,更具稳定性[17],但对于粉碎性骨折来说,螺钉直径相对过大往往成为其有效固定的障碍,使用不当会加大骨折的移位程度。虽有应用可吸收螺钉治疗髌骨骨折的报道[18],但因其直径较大及生物力学的劣势未能成为髌骨内固定的主要方式。 钛缆是近年来出现的用于治疗髌骨骨折的内固定材料。HUANG等[19] 应用钛缆环扎技术治疗髌骨骨折,若要钛缆髌骨缘更紧密地贴附,可应用专用拉紧器进行加压固定,缆结较小且平整,对软组织刺激小,患者可早期活动,治疗患者中未出现并发症,是一种有效的内植物。钛缆与空心钉形成的张力带系统治疗髌骨骨折效果良好,李绍良等[20]应用埋头加压螺钉结合钛缆固定治疗髌骨骨折,认为钛缆技术操作更为方便,能更好地控制张力带系统加压时的力量,防止过度加压及钢丝造成的切割作用,固定牢固,有利于膝关节早期功能锻炼,钛缆固定效果确切并减小了对周围组织的刺激。WANG等[21]用钛缆制作成帽状结构保护粉碎的髌骨,结合环扎及8字形固定,对于C2和C3型骨折形成更好的保护和固定,认为钛缆具有更好的柔韧性,可塑形强,三方面的联合固定是治疗髌骨粉碎性骨折的有效手段。 聚髌器是针对髌骨外形设计的内固定装置,分为可变形记忆合金聚髌器及分体加压式聚髌器,可对髌骨上下缘形成有效包绕固定。可变形聚髌器凭借预热变软可塑形、预冷变硬的特性完成固定任务;分体式聚髌器先完成对髌骨上下缘的把持,再对二者之间形成加压连接。应避免聚髌器与髌骨尺寸不符造成的松动或断端过度加压[22],马悦辉等[23]设计了一种蝶形镍钛形状记忆合金聚髌器,其中部的加压环呈哑铃型,为有效减少应力遮挡,加压环与两边护翼均为镂空设计,利于术后骨折间隙骨痂生成,防止骨接触部位发生骨质疏松,甚至再骨折;其上方入下方的爪形结构包覆范围广,只需少数几种型号就可满足治疗需要,选型简单,规避了传统髌骨爪因型号尺寸固定不变、数量众多、治疗时需精确选型的难题。 钢板越来越多地被应用于髌骨骨折的治疗。GAO等[24]应用微型钢板对髌骨细碎骨块进行把持固定,与其他内固定方式配合使用,固定牢靠,术中可将复杂骨折变为简单骨折、尤其对冠状面骨折效果显著。WURM等[25]应用多角度锁定钢板放置于髌骨前表面,简单骨折可用4孔钢板固定,根据骨折线形态将钢板摆放在合适的位置,钢板中部滑槽可打入临时固定钉进行加压及把持,粉碎性骨折可采用多孔钢板进行固定,此方法固定髌骨骨折安全、可靠,容易被骨科医生掌握。WILD等[26]应用包绕髌骨两侧缘的多角度固定的2.7 mm钢板装置,下方的2个护翼从前向后插入髌骨下缘保护髌骨下极,钢板包绕髌骨两侧缘,螺钉向髌骨中心方向固定,可从多个角度维持稳定,尤其适用于C3型髌骨骨折。MATEJ?I?等[27]设计了针对髌骨下极骨折的篮筐状钢板,钢板包绕髌骨下极进行保护,螺钉自下向上及斜上方向打入固定,对髌骨下极骨折取得了良好的疗效。CHO等[28]将锁定加压钢板塑形后放置于髌骨形成包绕保护,钢丝垂直环扎时自钢板孔穿出,钢板与钢丝配合使骨折得到更加有效的固定。DICKENS等[29]研究发现,将神经外科使用的钛网放置于髌骨前表面治疗髌骨骨折对骨折断端有更好的加压作用,可作为髌骨骨折的可选固定方式。 2.2.2 内植物的微创治疗及数字化应用 微创技术损伤小,利于患者快速康复,成为当代骨科的发展趋势之一,也是髌骨骨折内植物治疗的改良方向之一。周凯华等[30]使用自制的穿刺器引入直径1.5 mm的2道钢丝,一道为髌前张力带钢丝,另一道为髌骨边缘环扎钢丝,只需髌骨外上方1个纵切口和3个引导钢丝的穿刺点,可通过髌骨下缘的纵形小切口加用克氏针固定,此方法治疗非粉碎性骨折效果良好,但要求术者手术经验丰富,手术时间较长,术中透视较多。王湘江等[31]对于简单髌骨骨折采用经皮钳夹固定,经皮打入带有环形尾翼的克氏针,再以硬膜外穿刺针引导环扎2道钢丝,形成张力带固定系统。关节镜技术也被应用于髌骨骨折的手术中,通过关节镜术者可清除关节腔积血,探查关节内结构,判定关节面复位情况,查看内固定位置,使微创治疗更加确切、高效[32]。 数字化和3D打印技术也被应用于髌骨骨折的内植物治疗中。张学胜等[33]对5 例畸形愈合的陈旧性髌骨骨折患者进行CT三维重建,采用计算机软件辅助分析,细化骨折形态、愈合情况及关节面平整度等信息,应用CAD设计符合髌骨形态的截骨与复位模板,以3D打印技术制作实物模型,制定详细的手术方案并进行手术演练,术中可更加精确地运用Cable-Pin系统对髌骨进行截骨后固定,手术效果良好。 2.2.3 髌骨骨折的外固定术 髌骨外固定技术主要应用于局部皮肤条件差及感染、骨不连等特殊病例。万千等[34]应用自制的经皮弹力外固定器治疗髌骨骨折,其锥形尖端分别刺入髌骨上下极,二者之间通过弹性环连接对髌骨骨折起到固定加压作用。陆刚等[35]应用分体加压聚髌器经皮固定髌骨骨折,认为此方法固定可靠,可微创进行,患者依从性好。但髌骨外固定技术适应证的选择值得商榷,外固定不应作为髌骨的常规手术方式,在特殊情况下可作为髌骨骨折可选术式之一。"
[1] Henrichsen JL, Wilhem SK, Siljander MP, et al. Treatment of patella fractures. Orthopedics.2018;41(6):e747-e755. [2] Jarraya M, Diaz LE, Arndt WF, et al. Imaging of patellar fractures. Insights Imaging .2017;8(1):49-57. [3] Gwinner C, Märdian S, Schwabe P, et al. Current concepts review: Fractures of the patella.GMS Interdiscip Plast Reconstr Surg DGPW. 2016;5:Doc01 . [4] Pesch S, Kirchhoff K, Biberthaler P, et al. Patellar fractures.Unfallchirurg.2019;122(3):225-237. [5] Kakazu R, Archdeacon MT. Surgical management of patellar fractures. Orthop Clin North Am.2016 ;47(1):77-83. [6] Müller EC, Frosch KH. Fractures of the patella. Chirurg.2019;90(3): 243-254 . [7] Agarwala S, Agrawal P, Sobti A. A novel technique of patella fracture fixation facilitating early mobilization and reducing re-operation rates. J Clin Orthop Trauma.2015;6(3): 207-211. [8] Oh HK, Choo SK, Kim JW, et al. Internal fixation of displaced inferior pole of the patella fractures using vertical wiring augmented with Krachow suturing. Injury. 2015;46(12):2512-2515. [9] 陈子秋.高强度可吸收线缝合固定治疗粉碎性髌骨骨折临床疗效分析[J].中国现代手术学杂志,2019,23(1):63-67. [10] 毕大鹏,张浩,王源伟,等. 爱惜邦线联合张力带别针治疗髌骨粉碎性骨折临床观察[J].创伤与急危重病医学,2019,7(4):256-257. [11] Shea GK, Hoi-Ting So K, Tam KW, et al. Comparing 3 Different Techniques of Patella Fracture Fixation and Their Complications. Geriatr Orthop Surg Rehabil.2019;10:2151459319827143. [12] 陈羽,王树强,房雷,等. 双滑轮技术结合“8”字张力带治疗髌骨下极粉碎性骨折[J]. 第二军医大学学报,2019 ,40(10):1135-1137. [13] Hambright DS, Walley KC, Hall A, et al. Revisiting tension band fixation for difficult patellar fractures. J Orthop Ttrauma.2017;31 (2): e66-e72. [14] Kyung MG, Lee SH, Kim MB. Complications related to implant fixation of patellar fractures: comparison of ring pins versus bent K-wires. J Knee Surg .2017;30(6):560-564. [15] 笪晓伟,李启中,郭海欧,等. “P”形克氏针张力带内固定治疗髌骨骨折[J].实用骨科杂志,2016,22(3):275-277. [16] Avery MC, Jo S, Chang A, et al. Cannulated Screw Prominence in Tension Band Wiring of Patella Fractures Increases Fracture Gapping: A Cadaver Study. Clin Orthop Relat Res.2019;477(5):1249-1255. [17] Zha K, Liu GH, Yang SH, et al . Cable pin system versus K-wire tension band fixation for patella fractures in Chinese Han population: A meta-analysis. Huazhong Keji Daxue Xuebao.2017;37(5): 667-674. [18] Nuelle CW, Nuelle JAV, Balldin BC. Open Reduction internal fixation of a traumatic osteochondral lesion of the patella with bioabsorbable screw fixation. Arthrosc Tech. 2019;8(11):e1361-e1365. [19] Huang SL, Xue JL, Gao ZQ, et al. Management of patellar fracture with titanium cable cerclage. Medicine (Baltimore). 2017;96(44): e8525. [20] 李绍良,李庭,王满宜,等.对埋头加压螺钉结合线缆固定治疗髌骨骨折的疗效分析[J]. 骨科临床与研究杂志,2019,4(2):96-99. [21] Wang F, Luo TD, Chen C, et al. The modified anterior ellipsoidal cap titanium cable tension band for comminuted patellar fractures. J Orthop Surg (Hong Kong). 2019;27(3):2309499019874018. [22] Zhang Y, Wang P, Xia Y, et al. Application of a shape-memory alloy concentrator in displaced patella fractures: technique and long-term results. J Knee Surg.2017;30(2):166-173. [23] 马悦辉,申光,缪祥文,等.NiTi 形状记忆合金蝶形髌骨爪[J]. 甘肃科技,2019,35(11):57-59. [24] Gao S, Zhang F, Gao T, et al. A novel technique of using a miniature plate in combination with tension band wiring to treat comminuted patellar fractures. Medicine.2018;97(15):e0311. [25] Wurm S, Bühren V, Augat P. Treating patella fractures with a locking patella plate - first clinical results. Injury. 2018;49 (Suppl 1): S51-S55. [26] Wild M, Fischer K,Hilsenbeck F, et al. Treating patella fractures with a fixed-angle patella plate-A prospective observational study. Injury. 2016;47(8):1737-1743. [27] Matejčić A, Ivica M, Jurišić D, et al. Internal fixation of patellar apex fractures with the basket plate: 25 years of experience. Injury. 2015;46(Suppl 6) :S87-90. [28] Cho JW, Kim J, Cho WT, et al. Comminuted inferior pole fracture of patella can be successfully treated with rim-plate-augmented separate vertical wiring. Arch Orthop Trauma.2018;138(2):195-202 . [29] Dickens AJ, Salas C, Rise L, et al. Titanium mesh as a low-profile alternative for tension-band augmentation in patella fracture fixation: A biomechanical study. Injury. 2015;46(6):1001-1006. [30] 周凯华,杨军.经皮微创 Pyrford 技术治疗粉碎性髌骨骨折的临床疗效[J].中国骨与关节杂志,2017, 6(11):823-827. [31] 王湘江,王贵清,万彬,等. 闭合复位经皮髌骨针张力带微创治疗髌骨骨折[J]. 中国骨科临床与基础研究杂志,2016,8(1):15-19. [32] Wang S, Zhang H, Tang J, et al. Treatment of patellar fracture with internal fixation combined closed reduction with arthroscope aid. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi.2010;24(1):11-13. [33] 张学胜,韩宝生,苗秋菊.数字化和 3D 打印技术辅助治疗陈旧性髌骨骨折[J]. 生物骨科材料与临床研究,2020,17(1):26-30. [34] 万千,万国平,马海鱼,等.经皮弹力外固定器治疗髌骨骨折的临床疗效观察[J].中国骨与关节损伤杂志, 2005,20.(3):194-195. [35] 陆刚,李永刚,李长亮,等. 内固定和外固定应用于髌骨骨折固定中疗效及依从性比较[J].创伤外科杂志,2014,16(1):25-28. [36] Byun SE, Sim JA, Joo YB, et al. Changes in patellar fracture characteristics: A multicenter retrospective analysis of 1596 patellar fracture cases between 2003 and 2017. Injury. 2019;50(12):2287-2291. [37] Ali M, Kuiper J, John J. Biomechanical analysis of tension band wiring (TBW) of transverse fractures of patella. Chin J Traumatol. 2016; 19(5):255-258. [38] 高旭,尹海磊,卢建峰.拉出钢丝技术治疗髌骨分层骨折6例报告[J]. 中华关节外科杂志(电子版),2019,13(6):769-772. [39] Wang J, Tang X, Dong P, et al. Effectiveness of high strength suture fixation in treatment of patellar transverse fracture. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2018;32(6):694-697. [40] Yuan JM, Tao ZS, Yang M, et al. Repair of the fracture of the joint of tendon and bone of the quadriceps femoris tendon with wire anchor and transverse drilling of the patella. Zhongguo Gu Shang.2020;33(1): 71-75. [41] Ling M, han S, Jiang D, et al. Where should Kirschner wires be placed when fixing patella fracture with modified tension-band wiring? A finite element analysis. J Orthop Surg Res. 2019;14(1):14. [42] Khan I, Dar MY, Rashid S, et al. Internal fixation of transverse patella fractures using cannulated cancellous screws with anterior tension band wiring. Malays Orthop J. 2016;10(2):21-26. [43] Zha K, Liu GH, Yang SH, et al. Cable pin system versus K-wire tension band fixation for patella fractures in Chinese Han population: A meta-analysis. J Huazhong Univ Sci Technolog Med Sci.2017;37(5):667-674. [44] Zhao QM, Gu XF, Cheng L,et al. Comparison of titanium cable tension band and nickel-titanium patella concentrator for patella fractures. Adv Clin Exp Med. 2017;26(4):615-619. [45] Meng D, Xu P, Shen D, et al. A clinical comparison study of three different methods for treatment of transverse patellar fractures. J Orthop Sci. 2019 ;24(1):142-146. [46] Massoud EIE. Repair of comminuted fracture of the lower patellar pole. Ulus Travma Acil Cerrahi Derg. 2017;2(2): 150-155. [47] Wardak MI, Siawash AR, Hayda R, et al. Fixation of patella fractures with a minimally invasive tensioned wire method: compressive external fixation.J Trauma Acute Care Surg.2012;72(5):1393-1398. |
[1] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
[2] | Xu Feng, Kang Hui, Wei Tanjun, Xi Jintao. Biomechanical analysis of different fixation methods of pedicle screws for thoracolumbar fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1313-1317. |
[3] | Jiang Yong, Luo Yi, Ding Yongli, Zhou Yong, Min Li, Tang Fan, Zhang Wenli, Duan Hong, Tu Chongqi. Von Mises stress on the influence of pelvic stability by precise sacral resection and clinical validation [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1318-1323. |
[4] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[5] | Zhang Yu, Tian Shaoqi, Zeng Guobo, Hu Chuan. Risk factors for myocardial infarction following primary total joint arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1340-1345. |
[6] | Wei Wei, Li Jian, Huang Linhai, Lan Mindong, Lu Xianwei, Huang Shaodong. Factors affecting fall fear in the first movement of elderly patients after total knee or hip arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1351-1355. |
[7] | Wang Jinjun, Deng Zengfa, Liu Kang, He Zhiyong, Yu Xinping, Liang Jianji, Li Chen, Guo Zhouyang. Hemostatic effect and safety of intravenous drip of tranexamic acid combined with topical application of cocktail containing tranexamic acid in total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1356-1361. |
[8] | Xiao Guoqing, Liu Xuanze, Yan Yuhao, Zhong Xihong. Influencing factors of knee flexion limitation after total knee arthroplasty with posterior stabilized prostheses [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1362-1367. |
[9] | Huang Zexiao, Yang Mei, Lin Shiwei, He Heyu. Correlation between the level of serum n-3 polyunsaturated fatty acids and quadriceps weakness in the early stage after total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1375-1380. |
[10] | Zhang Chong, Liu Zhiang, Yao Shuaihui, Gao Junsheng, Jiang Yan, Zhang Lu. Safety and effectiveness of topical application of tranexamic acid to reduce drainage of elderly femoral neck fractures after total hip arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1381-1386. |
[11] | Wang Haiying, Lü Bing, Li Hui, Wang Shunyi. Posterior lumbar interbody fusion for degenerative lumbar spondylolisthesis: prediction of functional prognosis of patients based on spinopelvic parameters [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1393-1397. |
[12] | Lü Zhen, Bai Jinzhu. A prospective study on the application of staged lumbar motion chain rehabilitation based on McKenzie’s technique after lumbar percutaneous transforaminal endoscopic discectomy [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1398-1403. |
[13] | Chen Xinmin, Li Wenbiao, Xiong Kaikai, Xiong Xiaoyan, Zheng Liqin, Li Musheng, Zheng Yongze, Lin Ziling. Type A3.3 femoral intertrochanteric fracture with augmented proximal femoral nail anti-rotation in the elderly: finite element analysis of the optimal amount of bone cement [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1404-1409. |
[14] | Du Xiupeng, Yang Zhaohui. Effect of degree of initial deformity of impacted femoral neck fractures under 65 years of age on femoral neck shortening [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1410-1416. |
[15] | Zhang Shangpu, Ju Xiaodong, Song Hengyi, Dong Zhi, Wang Chen, Sun Guodong. Arthroscopic suture bridge technique with suture anchor in the treatment of acromioclavicular dislocation [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1417-1422. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||