Chinese Journal of Tissue Engineering Research ›› 2021, Vol. 25 ›› Issue (9): 1434-1439.doi: 10.3969/j.issn.2095-4344.3754
Previous Articles Next Articles
Zhang Chao, Lü Xin
Received:
2020-05-25
Revised:
2020-06-02
Accepted:
2020-06-21
Online:
2021-03-28
Published:
2020-12-16
Contact:
Lü Xin, Chief physician, Master’s supervisor, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
About author:
Zhang Chao, Master candidate, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
CLC Number:
Zhang Chao, Lü Xin. Heterotopic ossification after acetabular fracture fixation: risk factors, prevention and treatment progress[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1434-1439.
2.1 病理机制 异位骨化的病理生理机制与骨折愈合生理过程高度类似,目前尚未完全明确,近年来对其发病机制的研究主要集中于细胞、分子水平。虽然病因学尚未完全了解,但公认的异位骨化形成是由全身因素和局部组织变化共同决定的:主要是前列腺素活性增加引起的炎症,具体表现为前列腺素2、组织缺氧因子、矿化生长因子上调,交感神经活性改变,以及甲状旁腺素和降钙素之间的不平衡[2]。近年来,多数研究认为异位骨化形成所需的3大条件包括:①成骨诱导因子:骨形态发生蛋白2和骨形态发生蛋白4是目前研究最多的成骨诱导因子,他们可以通过与丝氨酸/苏氨酸激酶受体结合介导胞内信号传递,促使周围的细胞向成骨细胞转化;②成骨前体细胞:长期存在的炎症反应会导致周围或血液中成骨前体细胞群聚集,从而促使周围组织发生异位骨化。而普遍认为参与异位骨化形成最主要的细胞群是间充干细胞;③局部微环境:在缺氧的环境中,容易产生缺氧诱导因子1α,并由此产生血管内皮生长因子、碱性成纤维细胞生长因子、血小板衍生的生长因子和血管生成素2等多种血管生成因子,从而使血管内皮细胞运动、聚集和增殖,参与异位骨化形成[20]。因而,异位骨化的形成机制可能是由于局部炎症反应导致机体释放成骨生成诱导因子,在局部微环境的作用下,诱导成纤维细胞分化为软骨细胞,进而通过软骨内成骨导致异位骨形成[19,21-22]。 2.2 诊断 髋臼骨折术后异位骨化的诊断主要依赖于X射线检查,早期临床表现和实验室检验不具有特异性,但其对早期异位骨化有一定提示作用。 2.2.1 临床表现 髋臼骨折术后早期异位骨化(术后<4周)出现症状时,由于伴有疼痛、肿胀、红斑和关节活动度下降,可被误认为髋部的伤口感染、蜂窝织炎、髋关节感染或血栓性静脉炎等。髋臼术后4周后,异位骨化患者的关节活动度、疼痛和肿胀程度继续下降。然而,临床上多数异位骨化无症状,需要通过影像学检查发现。 2.2.2 影像学检查 骨盆X射线平片、骨扫描和髋部CT扫描都是有用的诊断工具,通常在髋部手术3-6周后的放射学检查中可以看到髋部发生的异位骨化[23]。其中骨盆平片是诊断髋臼周围异位骨化最常用的影像学方法,可发现早期术后无症状的髋部异位骨化(<4周)。在异位骨化早期骨扫描可显示出钙物质摄取增加,晚期摄取减少。髋部CT尤其是三维CT可提供更详细的异位骨图像,可为切除异位骨提供合适的手术方式[24]。 2.2.3 实验室检验 在异位骨化患者中,血清中钙和磷的水平在整个疾病过程中都是正常的,但有研究发现碱性磷酸酶值在异位骨化早期(4周左右)升高[25]。有大鼠动物模型表明,基质金属蛋白酶9可能是异位骨化形成的早期生物标志物(即在X射线片上可检测到骨化之前),然而基质金属蛋白酶9与异位骨化形成或成熟之间的相关性尚未在人类中得到确定[26]。在晚期(即异位骨化发病后9-12周),运动范围可能继续下降,甚至达到髋部强直,此时髋部疼痛、肿胀消失。此外,血清碱性磷酸酶水平恢复正常,X射线平片显示骨成熟,骨扫描矿物质摄取减少。 2.3 分类 髋关节异位骨化分型系统主要有由BROOKER等于1973年提出的Brooker分型(基于骨盆正位X射线片,与髋关节活动度无关,常过高评估异位骨化程度)和由WRIGHT等1996年提出的改良Brooker分型(基于骨盆正位及Judet斜位X射线片,与髋关节活动度相关)[27-28]。Brooker分型[27]:1级:髋周软组织内形成孤立性骨岛;2级:股骨或骨盆侧形成骨化,两者间隙≥1 cm;3级:股骨或骨盆侧形成骨化,两者间隙<1 cm;4级:形成骨桥,骨性强直;其中3级和4级又被称为临床相关型(严重异位骨化)。改良Brooker分型[28]:0级:无骨形成,髋关节活动不受限;1级:软组织内骨岛形成,髋关节活动不受限;2级:骨刺形成且间距≥1 cm,髋关节活动轻微受限;3级:骨刺形成且间距<1 cm,髋关节活动明显受限;4级:骨性关节融合,髋关节僵硬;其中3级和4级又被称为临床相关型(严重异位骨化)。Brooker分型因其简单性和熟悉性,是一种在临床广泛使用的定量和定性评估工具,但也有一定的局限性。改良Brooker分型是使用3个X射线片(骨盆正位、Judet斜位内、外侧)的改良分类方法,与Brooker分型不同,改进的分类提供了与实际髋关节活动范围的准确关联[28]。 MARY JIAYI等[29]发现Brooker分型不能很好地描述异位骨体积大小的差异,CT扫描可以降低其分型的模糊性,有必要开发一种与临床表现(如髋关节功能)相对应的分类方法。最近,DEBAUN等[30]为髋部异位骨化建立了一个更为简明的分类标准,为髋部不同位置的异位骨切除提供了手术入路的选择。该分型基于异位骨的解剖位置分为3类:1型,前型(前侧入路切除);2型,后型(后侧路切除);3型,中间型(内侧入路切除)。此种分类方法描述了髋臼手术后异位骨化的离散位置可用于指导基于异位骨位置的切除手术治疗。 2.4 危险因素 髋臼骨折手术固定后并发异位骨化的危险因素是多方面的,包括手术入路、受损软组织、男性、年龄、延长机械通气情况[18-19]、脑、胸腹外伤、多发骨折和手术延迟等[31-32]。因此,髋臼骨折术后异位骨化的危险因素可分为以下3类:手术因素、一般情况及临床和全身因素。 2.4.1 手术因素 手术入路的选择已被证明会影响术后髋关节的异位骨化,其中扩大髂股入路的风险最大,其次是Kocher-Langenbeck入路,而髂腹股沟入路风险最低[33];同时,复杂骨折、联合入路及同时行转子截骨也会增加术后异位骨化的风险[33-35]。据相关文献报道,坏死软组织特别是臀小肌受损会使髋关节严重异位骨化的发生率从2%上升到36%[36-37],故术中应将坏死的组织彻底清除。除此之外,MATTA等[38-39]发现T型髋臼骨折是一个独立的风险因素。而事实上,手术治疗髋臼骨折患者的异位骨化发生率可能是保守治疗的6倍[38-40]。 2.4.2 一般情况 患者的一般情况(如男性、年龄等)会影响术后异位骨化的发生率。一项三级中心髋臼骨折手术固定后10年的研究结果显示,男性为髋臼术后异位骨化的危险因素之一,年龄超过30岁是髋臼术后发生严重异位骨化的唯一危险因素[41] 。 2.4.3 临床和全身因素 除手术因素和患者一般情况外,异位骨化发展的潜在危险因素还包括机械通气时间、多发骨折、合并身体其他部位损伤(如颅脑损伤、脊柱骨折等)。FIROOZABADI 等[18]认为延长机械通气时间是髋臼骨折切开复位内固定术后异位骨化的危险因素。ANTHONISSEN等[42]最近通过动物模型研究发现,创伤性颅脑损伤也会促进髋部异位骨化的形成。 综上所述,髋臼骨折手术异位骨化的危险因素是多方面的,髋臼骨折术后应对患者进行风险评估,对于高风险(术后异位骨化的风险≥50%)的患者应采取一定的预防措施。 2.5 预防 从理论上来说,当高危患者实行有效预防模式后,异位骨化是可以预防的。手术技术、非类固醇抗炎药和放疗均可降低髋臼骨折术后异位骨化的发生率,但预防方式的选择应遵循个体化的原则。 2.5.1 术中预防 在3种手术入路方式中,扩大髂股入路术后发生异位骨化的风险最高,故预防髋臼骨折异位骨化需在手术中避免采用扩大型髂股入路及联合入路,在术中避免或尽量减少从髂骨外板处剥离臀肌,从而减少对髋部周围肌肉等软组织的损伤,对术中已经缺血坏死的肌肉组织要彻底清创[36-37]。同时在解剖复位的基础上,尽量减少手术切口的长度及对周围软组织的损伤剥离。 2.5.2 药物预防 目前临床上使用最广泛且对预防髋臼骨折术后异位骨化效果较为肯定的非类固醇类药物主要是吲哚美辛,其作用机制主要是通过抑制环氧化酶,抑制生理和炎性前列腺素的形成,减少局部炎性反应和阻止间充质细胞向成骨细胞转化,达到预防异位骨化的作用[43]。目前临床治疗中常用的药物预防髋关节异位骨化手段主要为口服非类固醇抗炎药如吲哚美辛等,应于术后24 h内开始,剂量为75 mg/d(75 mg缓释胶囊口服,1次/d,或25 mg片剂口服,3次/d),疗程分为短期(1周)和长期(4-6周),其不良反应主要包括患者不耐受、胃肠道出血等,甚至导致骨折不愈合。在SAGI等[44]应用吲哚美辛预防髋臼骨折术后异位骨化的队列研究中,结果显示吲哚美辛治疗6周组髋臼骨折不愈合发生率高达62%,其中以后壁骨折为主;而对照组髋臼骨折不愈合发生率也达19%;此报道结果显示的高髋臼骨折不愈合率可能是由于临床观察时间过短,或在影像学检查中忽视了骨折愈合区域,而其他相关研究均未发现预防性应用吲哚美辛会导致髋臼骨折不愈合[11,45]。SAGI等 [44]建议疗程为1周,因为此疗程既可有效预防髋关节异位骨化,又可减少骨折不愈合风险和胃肠道不良反应。目前支持吲哚美辛预防髋臼骨折后髋关节异位骨化的有效证据大多为回顾性研究,而一些前瞻性研究提示其预防性治疗无效,但这些研究循证医学等级较低,且均存在严重缺陷,尤其是存在患者用药依从性差的问题[44,46]。现有的证据显示,对于依从性良好的高危患者,吲哚美辛可降低髋臼骨折后髋关节异位骨化发生率。但常规预防的临床益处在很大程度上仍是未知的,并且有明显的负面影响,如胃肠不适、出血、肾功能衰竭。作者建议在使用非类固醇抗炎药期间,将非类固醇抗炎药与胃保护药联合使用,以减轻胃肠道不良反应。最近,研究人员重点研究选择性环氧化酶2抑制剂对异位骨化的疗效,环氧化酶2抑制剂可能和非选择性非类固醇抗炎药一样有效,不良反应更小[47-48]。CHENG等[49]发现短期内应用帕瑞昔布和塞来昔布有助于预防髋臼骨折术后异位骨化;MONTGOMERY等[50]发现凝血酶止血基质也能够有效降低髋臼骨折术后异位骨化的风险。 2.5.3 放疗 放疗是利用放射线预防异位骨化的一种局部治疗方法,其作用机制是通过杀灭局部的单核细胞、巨噬细胞阻止骨形态发生蛋白的生成,并灭活多能间充质细胞,阻断其对骨形态发生蛋白产生应答,从而达到抑制异位骨化发生的效果[51]。髋臼骨折术后放疗时机在预防异位骨化中起着重要作用,多篇文献证明髋臼骨折术后72 h内是放疗预防异位骨化的最佳时机[52-54]。LEE等[51]最近的一项研究表明,目前的放疗方案(7.0-8.0 Gy的单次放疗方案)对预防异位骨化的进展是有效的,并推测较高的放射剂量预防效果会更好,而且并未发现高剂量所带来的不良反应。另外,尽管有学者认为放疗可能会诱发恶性肿瘤的发生,但临床上却少见相关报道。研究表明,放疗并不会增加恶性肿瘤发生率[12,55]。以往的数据证实了放疗在预防异位骨化方面的安全性和有效性,目前推荐术后72 h内行7.0-8.0 Gy剂量的单次局部放疗方案,特别是对于高危患者,首选7 Gy的单一剂量[45]。 放疗可以有效预防异位骨化的发生,但放疗价格昂贵,且在基层医院该技术尚不成熟。有研究发现放疗和非类固醇抗炎药在预防髋关节术后异位骨化方面的效果并无差 异[11,13,56]。因此,对于经济条件一般且无相关禁忌证、或医疗条件不允许的患者,仍然建议优先选择非类固醇抗炎药预防。 2.5.4 联合预防 尽早服用非类固醇抗炎药的效果最好,但是当异位骨成熟时,疗效就要差很多。在预防异位骨化方面,非类固醇抗炎药的效果并不比放疗差,两种方法结合使用时效果甚至更好。预防性放疗与预防性非类固醇抗炎药治疗通过不同途径发挥作用,这构成了两者联合应用的理论基础,但目前对于两者联合预防治疗有效性的研究较少。PIATEK等[57]报道了24例使用联合方案治疗的患者,与单独使用两种方案治疗的历史同期组相比,结果有所改善。尽管如此,必须进行更大规模的试验,以发现联合预防方案的真正效用。MOED等[28]建议根据手术入路选择预防方法,采用髂腹股沟入路、年轻及育龄妇女患者无需预防性药物治疗;采用Kocher-Langenbeck入路的患者可考虑短期使用药物预防,如口服吲哚美辛1周;采用扩大髂股入路、伴有长骨骨折及无法耐受非类固醇抗炎药的患者可进行放疗预防。 2.6 治疗 2.6.1 新型治疗手段研究 近年来,大量的研究从分子及细胞层面解释异位骨化的发生机制,并针对异位骨化的治疗开展了多项分子生物学机制研究,为异位骨化治疗提供了一定的理论基础。WANG等[58]在大鼠模型中阐明富含半胱氨酸的酸性分泌蛋白基因可通过沉默MAPK信号通路从而抑制异位骨化的发生。SORKIN等[59]通过小鼠伤口愈合模型发现产生转化生长因子β1(TGFCD47)的单核(巨噬)细胞与异位骨化的分化有关,通过调节CD47的激活过程可以预防异位骨化的形成。KUSANO等[60]通过小鼠肌腱模型发现地氯雷他定可抑制人血小板衍生生长因子受体α+(PDGFRα+)细胞的成骨分化,从而抑制异位骨化的形成。张弛等[61]通过在大鼠跟腱损伤模型局部注射转染SMAD7基因病毒载体的实验,发现SMAD7通过调控内皮间质转化,可以预防术后异位骨化的形成,且不影响正常的伤口愈合过程。另有研究还发现异位骨化的基因表达因子具有高度特异性,可以通过作用于局部特定基因或信号通路,起到预防及治疗异位骨化的效果[62]。分子生物学机制是当今异位骨化研究的热点,尽管上述的研究仅仅处于动物实验研究阶段,但为早期的临床研究铺平了道路。 2.6.2 手术治疗 手术是治疗已经成熟的髋部异位骨化唯一有效的方法,主要目的是改善髋关节功能,但术后仍需结合药物、放疗和关节的主被动锻炼以巩固手术效果和预防异位骨化复发[63-64]。术前需通过影像学检查,如标准的骨盆正位、髂骨斜位及闭孔位X射线片、CT平扫、CT三维重建及三维立体打印等充分评估髋关节异位骨化范围。手术的适应证为髋关节严重的功能障碍(固定性屈曲挛缩、屈曲<100°、外展受限、内旋受限)导致个人生活和活动受限,同时髋关节完整(关节面对合良好、关节间隙正常),预期可通过手术治疗恢复80%的正常髋关节功能。当前关于手术时机的选择存在较大分歧,多数学者一致认为手术时机应选择在异位骨化成熟后,此时X射线片表现为异位骨边界清晰,有完整的骨皮质包裹,骨扫描活性显著降低,血清碱性磷酸酶活性下降[65],但碱性磷酸酶活性的可靠性欠佳。手术一般选择在伤后6-18个月进行[66],过于延后手术,则容易导致关节周围组织挛缩。但也有部分研究发现不选择该手术时机,同样可获得较为满意的效果。Cole等[8]报道了14例髋部异位骨化患者在异位骨并未完全成熟之前进行手术切除,且术后髋关节功能得到极大的改善,早期切除髋部周围的异位骨几乎没有复发的可能。因此,对于手术时机的选择,作者认为应结合异位骨化的成熟程度以及发生原因进行综合权衡考虑。此外,近年来随着对异位骨化认识的深入以及手术技能的提高,关节镜技术也被应用于异位骨化的治疗,并取得了比较认可的疗效。ONG等[67]对3例(其中2例Brooker分型为1级,1例Brooker分型为3级)异位骨化行髋关节镜下切除的患者随访研究发现,术后3例患者的关节功能均得到了极大改善,2年内随访未复发。随着关节镜技术的发展及相关手术设备的改进,应用髋关节镜手术治疗异位骨化,不仅可以取得和开放手术同样的疗效,而且具有切口小、术中出血少、术后疼痛轻等优点,可以作为未来治疗髋关节异位骨化一种优良的微创手术方式。"
[1] RANGANATHAN K, LODER S, AGARWAL S, et al. Heterotopic ossification: basic-science principles and clinical correlates. J Bone Joint Surg Am. 2015;97(13):1101-1111. [2] SHEHAB D, ELGAZZAR AH, COLLIER BD. Heterotopic ossification. J Nucl Med. 2002;43(3):346-353. [3] MURPHY D, KALISZER M, RICE J, et al. Outcome after acetabular fracture. Prognostic factors and their inter-relationships. Injury. 2003;34(7):512-517. [4] LAIRD A, KEATING JF. Acetabular fractures: a 16-year prospective epidemiological study. J Bone Joint Surg Br. 2005;87(7):969-973. [5] KITAYAMA K, KAWAKAMI Y, FUKUI T, et al. Rescue of ankylosing hip following open reduction and internal fixation of acetabular fracture by surgical resection of heterotopic ossification: A case report. Int J Surg Case Rep. 2018;53:107-111. [6] SIMONSEN LL, SONNE-HOLM S, KRASHENINNIKOFF M, et al. Symptomatic heterotopic ossification after very severe traumatic brain injury in 114 patients: incidence and risk factors. Injury. 2007; 38(10):1146-1150. [7] WU XB, YANG MH, ZHU SW, et al. Surgical resection of severe heterotopic ossification after open reduction and internal fixation of acetabular fractures: a case series of 18 patients. Injury. 2014;45(10): 1604-1610. [8] COLE PA, DUGARTE AJ, TALBOT M, et al. Early resection of ectopic bone in patients with heterotopic ossification about the hip after trauma. Injury. 2020;51(3):705-710. [9] CHIU FY, CHEN CM, LO WH. Surgical treatment of displaced acetabular fractures - 72 cases followed for 10 (6-14) years. Injury. 2000;31(3): 181-185. [10] DENORMANDIE P, DE L’ESCALOPIER N, GATIN L, et al.Resection of neurogenic heterotopic ossification (NHO) of the hip. Orthop Traumatol Surg Res. 2018;104(1S):S121-S127. [11] BURD TA, LOWRY KJ, ANGLEN JO. Indomethacin compared with localized irradiation for the prevention of heterotopic ossification following surgical treatment of acetabular fractures. J Bone Joint Surg Am. 2001;83(12):1783-1788. [12] BURNET NG, NASR P, YIP G, et al. Prophylactic radiotherapy against heterotopic ossification following internal fixation of acetabular fractures: a comparative estimate of risk. Br J Radiol. 2014;87(1042): 20140398. [13] BLOKHUIS TJ, FRÖLKE JP. Is radiation superior to indomethacin to prevent heterotopic ossification in acetabular fractures?: a systematic review. Clin Orthop Relat Res. 2009;467(2):526-530. [14] NEGRIN LL, SELIGSON D. Results of 167 consecutive cases of acetabular fractures using the Kocher-Langenbeck approach: a case series. J Orthop Surg Res. 2017;12(1):66. [15] HARAN MJ, BHUTA T, LEE BS. WITHDRAWN: Pharmacological interventions for treating acute heterotopic ossification. Cochrane Database Syst Rev. 2010;(5):CD003321. [16] MAGILL P, MCGARRY J, QUEALLY JM, et al. Minimum ten-year follow-up of acetabular fracture fixation from the Irish tertiary referral centre. Injury. 2012;43(4):500-504. [17] BASCHERA D, RAD H, COLLOPY D, et al. Incidence and clinical relevance of heterotopic ossification after internal fixation of acetabular fractures: retrospective cohort and case control study. J Orthop Surg Res. 2015;10:60. [18] FIROOZABADI R, O’MARA TJ, SWENSON A, et al. Risk factors for the development of heterotopic ossification after acetabular fracture fixation. Clin Orthop Relat Res. 2014;472(11):3383-3388. [19] DʼHEURLE A, ARCHDEACON MT, HIRATZKA S, et al. Do Surrogates of Injury Severity Influence the Occurrence of Heterotopic Ossification in Fractures of the Acetabulum? J Orthop Trauma. 2016;30(4):213-216. [20] HUANG Y, WANG X, LIN H. The hypoxic microenvironment: a driving force for heterotopic ossification progression. Cell Commun Signal. 2020;18(1):20. [21] EISENSTEIN N, STAPLEY S, GROVER L. Post-Traumatic Heterotopic Ossification: An Old Problem in Need of New Solutions. J Orthop Res. 2018;36(4):1061-1068. [22] ZHANG Q, ZHANG Y, YAN M, et al. βig-h3 enhances chondrogenesis via promoting mesenchymal condensation in rat Achilles tendon heterotopic ossification model. Aging (Albany NY). 2020;12(8):7030‐7041. [23] PEK CH, LIM MC, YONG R, et al. Neurogenic heterotopic ossification after a stroke: diagnostic and radiological challenges. Singapore Med J. 2014;55(8):e119-e122. [24] ARDUINI M, MANCINI F, FARSETTI P, et al. A new classification of peri-articular heterotopic ossification of the hip associated with neurological injury: 3D CT scan assessment and intra-operative findings. Bone Joint J. 2015;97-B(7):899-904. [25] ISAACSON BM, POTTER BK, BLOEBAUM RD, et al. Link Between Clinical Predictors of Heterotopic Ossification and Histological Analysis in Combat-Injured Service Members. J Bone Joint Surg Am. 2016;98(8): 647-657. [26] SHI WZ, JU JY, XIAO HJ, et al. Dynamics of MMP 9, MMP 2 and TIMP 1 in a rat model of brain injury combined with traumatic heterotopic ossification. Mol Med Rep. 2017;15(4):2129-2135. [27] BROOKER AF, BOWERMAN JW, ROBINSON RA, et al. Ectopic ossification following total hip replacement. Incidence and a method of classification. J Bone Joint Surg Am. 1973;55(8):1629-1632. [28] MOED BR, SMITH ST. Three-view radiographic assessment of heterotopic ossification after acetabular fracture surgery. J Orthop Trauma. 1996;10(2):93-98. [29] MARY JIAYI T, LINDA P, MICHAEL P, et al. Potential discrepancy between plain films and CT scans in Brooker classification of heterotopic ossification. Br J Radiol. 2017;90(1080):20170263. [30] DEBAUN MR, ZIINO C, LAPRADE C, et al. An anatomic classification for heterotopic ossification about the hip. J Orthop. 2020;21:228-231. [31] PAPE HC, LEHMANN U, VAN GRIENSVEN M, et al. Heterotopic ossifications in patients after severe blunt trauma with and without head trauma: incidence and patterns of distribution. J Orthop Trauma. 2001;15(4):229-237. [32] GIANNOUDIS PV, GROTZ MR, PAPAKOSTIDIS C, et al. Operative treatment of displaced fractures of the acetabulum. A meta-analysis. J Bone Joint Surg Br. 2005;87(1):2-9. [33] JOHNSON EE, KAY RM, DOREY FJ. Heterotopic ossification prophylaxis following operative treatment of acetabular fracture. Clin Orthop Relat Res. 1994;(305):88-95. [34] ALONSO JE, DAVILA R, BRADLEY E. Extended iliofemoral versus triradiate approaches in management of associated acetabular fractures. Clin Orthop Relat Res. 1994;(305):81-87. [35] BRAY TJ, ESSER M, FULKERSON L. Osteotomy of the trochanter in open reduction and internal fixation of acetabular fractures. J Bone Joint Surg Am. 1987;69(5):711-717. [36] ANTHONISSEN J, OSSENDORF C, HOCK JL, et al. The role of muscular trauma in the development of heterotopic ossification after hip surgery: An animal-model study in rats. Injury. 2016;47(3):613-616. [37] RATH EM, RUSSELL GV JR, WASHINGTON WJ, et al. Gluteus minimus necrotic muscle debridement diminishes heterotopic ossification after acetabular fracture fixation. Injury. 2002;33(9):751-756. [38] MATTA JM, MEHNE DK, ROFFI R. Fractures of the acetabulum. Early results of a prospective study. Clin Orthop Relat Res. 1986;(205): 241-250. [39] GHALAMBOR N, MATTA JM, BERNSTEIN L. Heterotopic ossification following operative treatment of acetabular fracture. An analysis of risk factors. Clin Orthop Relat Res. 1994;(305):96-105. [40] PENNAL GF, DAVIDSON J, GARSIDE H, et al. Results of treatment of acetabular fractures. Clin Orthop Relat Res. 1980;(151):115-123. [41] ELHASSAN Y, ABDELHAQ A, PIGGOTT RP, et al. Heterotopic Ossification following acetabular fixation: Incidence and risk factors: 10-year experience of a tertiary centre. Injury. 2016;47(6):1332-1336. [42] ANTHONISSEN J, STEFFEN CT, ALESSANDRI B, et al. Traumatic brain injury enhances the formation of heterotopic ossification around the hip: an animal model study [published online ahead of print, 2019 Dec 13]. Arch Orthop Trauma Surg. 2019;10.1007/s00402-019-03326-0. [43] 邹重文,陆焱,黄智.吲哚美辛预防髋臼骨折术后异位骨化的疗效分析[J].中国矫形外科杂志,2017,25(10):870-873. [44] SAGI HC, JORDAN CJ, BAREI DP, et al. Indomethacin prophylaxis for heterotopic ossification after acetabular fracture surgery increases the risk for nonunion of the posterior wall. J Orthop Trauma. 2014;28(7):377-383. [45] RUO REDDA MG, DE COLLE C, BIANCO L, et al. Heterotopic ossifications: role of radiotherapy as prophylactic treatment. Radiol Med. 2018;123(6):463-468. [46] MATTA JM, SIEBENROCK KA. Does indomethacin reduce heterotopic bone formation after operations for acetabular fractures? A prospective randomised study. J Bone Joint Surg Br. 1997;79(6):959-963. [47] KARUNAKAR MA, SEN A, BOSSE MJ, et al. Indometacin as prophylaxis for heterotopic ossification after the operative treatment of fractures of the acetabulum. J Bone Joint Surg Br. 2006;88(12):1613-1617. [48] RATH E, WARSCHAWSKI Y, MAMAN E, et al. Selective COX-2 Inhibitors Significantly Reduce the Occurrence of Heterotopic Ossification After Hip Arthroscopic Surgery. Am J Sports Med. 2016;44(3):677-681. [49] CHENG L, LONG HT, SUN BH, et al. The efficacy of a multimodal analgesia protocol in preventing heterotopic ossification after acetabular fractures surgery. Int J Clin Pharm. 2017;39(4):826-830. [50] MONTGOMERY T, PEARSON J, AGARWAL A, et al. Thrombin Hemostatic Matrix Reduces Heterotopic Ossification in Acetabular Fractures fixed via the Kocher-Langenbeck Approach [published online ahead of print, 2020 Apr 13]. J Orthop Trauma. 2020;10.1097/BOT.0000000000001783. [51] LEE DS, KIM Y, CHO HJ, et al. Hypofractionated Radiation Therapy for Progressive Heterotopic Ossification: The Relationship between Dose and Efficacy. Int J Radiat Oncol Biol Phys. 2020;106(5):993-997. [52] ARCHDEACON MT, D’HEURLE A, NEMETH N, et al. Is preoperative radiation therapy as effective as postoperative radiation therapy for heterotopic ossification prevention in acetabular fractures? Clin Orthop Relat Res. 2014;472(11):3389-3394. [53] MOURAD WF, PACKIANATHAN S, SHOURBAJI RA, et al. A prolonged time interval between trauma and prophylactic radiation therapy significantly increases the risk of heterotopic ossification. Int J Radiat Oncol Biol Phys. 2012;82(3):e339-e344. [54] ROOS DE, SMITH JG. Radiotherapy for the prophylaxis of heterotopic ossification: A single 7-8Gy fraction seems optimal. Radiother Oncol. 2015;116(1):1-3. [55] SHEYBANI A, TENNAPEL MJ, LACK WD, et al. Risk of radiation-induced malignancy with heterotopic ossification prophylaxis: a case-control analysis. Int J Radiat Oncol Biol Phys. 2014;89(3):584-589. [56] 王一民,马云飞,姜楠,等.放射治疗与非甾体类抗炎药治疗预防髋部手术后异位骨化疗效比较的Meta分析[J].中国全科医学, 2012,15(36):4200-4204. [57] PIATEK S, WESTPHAL T, ARBTER D, et al. Wertigkeit einer kombinierten Ossifikationsprophylaxe mit Indometacin und Bestrahlung bei Azetabulumfrakturen [Value of a combined ossification prophylaxis with indomethacin and radiotherapy for acetabular fractures]. Unfallchirurg. 2006;109(7):556-562. [58] WANG Q, YANG Q, ZHANG A, et al. Silencing of SPARC represses heterotopic ossification via inhibition of the MAPK signaling pathway. Biosci Rep. 2019;39(11):BSR20191805. [59] SORKIN M, HUBER AK, HWANG C, et al. Regulation of heterotopic ossification by monocytes in a mouse model of aberrant wound healing. Nat Commun. 2020;11(1):722. [60] KUSANO T, NAKATANI M, ISHIGURO N, et al. Desloratadine inhibits heterotopic ossification by suppression of BMP2-Smad1/5/8 signaling [published online ahead of print, 2020 Feb 11]. J Orthop Res. 2020; 10.1002/jor.24625. [61] 张弛,纪方.SMAD7调控内皮间质转化可预防跟腱损伤后的异位骨化[J].中国组织工程研究,2017,21(8):1178-1185. [62] ZHANG Q, ZHANG Y, YAN M, et al. Bioinformatics Analysis of the Molecular Mechanism of Late-Stage Heterotopic Ossification. Biomed Res Int. 2020;2020:5097823. [63] SODEMANN B, PERSSON PE, NILSSON OS. Nonsteroid anti-inflammatory drugs prevent the recurrence of heterotopic ossification after excision. Arch Orthop Trauma Surg. 1990;109(2):53-56. [64] MACHERAS GA, LEPETSOS P, LEONIDOU A, et al. Results from the surgical resection of severe heterotopic ossification of the hip: a case series of 26 patients. Eur J Orthop Surg Traumatol. 2017;27(8):1097-1102. [65] WICK M, MÜLLER EJ, HAHN MP, et al. Surgical excision of heterotopic bone after hip surgery followed by oral indomethacin application: is there a clinical benefit for the patient?. Arch Orthop Trauma Surg. 1999;119(3-4):151-155. [66] GARLAND DE. A clinical perspective on common forms of acquired heterotopic ossification. Clin Orthop Relat Res. 1991;(263):13-29. [67] ONG C, HALL M, YOUM T. Surgical technique: arthroscopic treatment of heterotopic ossification of the hip after prior hip arthroscopy. Clin Orthop Relat Res. 2013;471(4):1277-1282. |
[1] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
[2] | Hu Kai, Qiao Xiaohong, Zhang Yonghong, Wang Dong, Qin Sihe. Treatment of displaced intra-articular calcaneal fractures with cannulated screws and plates: a meta-analysis of 15 randomized controlled trials [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1465-1470. |
[3] | Xu Feng, Kang Hui, Wei Tanjun, Xi Jintao. Biomechanical analysis of different fixation methods of pedicle screws for thoracolumbar fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1313-1317. |
[4] | Zhang Yu, Tian Shaoqi, Zeng Guobo, Hu Chuan. Risk factors for myocardial infarction following primary total joint arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1340-1345. |
[5] | Zhang Chong, Liu Zhiang, Yao Shuaihui, Gao Junsheng, Jiang Yan, Zhang Lu. Safety and effectiveness of topical application of tranexamic acid to reduce drainage of elderly femoral neck fractures after total hip arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1381-1386. |
[6] | Wang Haiying, Lü Bing, Li Hui, Wang Shunyi. Posterior lumbar interbody fusion for degenerative lumbar spondylolisthesis: prediction of functional prognosis of patients based on spinopelvic parameters [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1393-1397. |
[7] | Chen Xinmin, Li Wenbiao, Xiong Kaikai, Xiong Xiaoyan, Zheng Liqin, Li Musheng, Zheng Yongze, Lin Ziling. Type A3.3 femoral intertrochanteric fracture with augmented proximal femoral nail anti-rotation in the elderly: finite element analysis of the optimal amount of bone cement [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1404-1409. |
[8] | Du Xiupeng, Yang Zhaohui. Effect of degree of initial deformity of impacted femoral neck fractures under 65 years of age on femoral neck shortening [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1410-1416. |
[9] | Zhou Jihui, Li Xinzhi, Zhou You, Huang Wei, Chen Wenyao. Multiple problems in the selection of implants for patellar fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1440-1445. |
[10] | Wang Debin, Bi Zhenggang. Related problems in anatomy mechanics, injury characteristics, fixed repair and three-dimensional technology application for olecranon fracture-dislocations [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1446-1451. |
[11] | Ji Zhixiang, Lan Changgong. Polymorphism of urate transporter in gout and its correlation with gout treatment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1290-1298. |
[12] | Yuan Mei, Zhang Xinxin, Guo Yisha, Bi Xia. Diagnostic potential of circulating microRNA in vascular cognitive impairment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1299-1304. |
[13] | Wang Xianyao, Guan Yalin, Liu Zhongshan. Strategies for improving the therapeutic efficacy of mesenchymal stem cells in the treatment of nonhealing wounds [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1081-1087. |
[14] | Wan Ran, Shi Xu, Liu Jingsong, Wang Yansong. Research progress in the treatment of spinal cord injury with mesenchymal stem cell secretome [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1088-1095. |
[15] | Liao Chengcheng, An Jiaxing, Tan Zhangxue, Wang Qian, Liu Jianguo. Therapeutic target and application prospects of oral squamous cell carcinoma stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1096-1103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||