Chinese Journal of Tissue Engineering Research ›› 2021, Vol. 25 ›› Issue (8): 1264-1269.doi: 10.3969/j.issn.2095-4344.3058
Previous Articles Next Articles
Wang Mengting, Gu Yanping, Ren Wenbo, Qin Qian, Bai Bingyi, Liao Yuanpeng
Received:
2020-04-27
Revised:
2020-04-30
Accepted:
2020-06-17
Online:
2021-03-18
Published:
2020-12-14
Contact:
Liao Yuanpeng, PhD, Professor, College of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, Sichuan Province, China
About author:
Wang Mengting, Master candidate, College of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, Sichuan Province, China
CLC Number:
Wang Mengting, Gu Yanping, Ren Wenbo, Qin Qian, Bai Bingyi, Liao Yuanpeng. Research hotspots of blood flow restriction training for dyskinesia based on visualization analysis[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1264-1269.
2.3 研究影响力分布 2.3.1 国家与机构分析 美国在血流限制训练领域研究发文量达182篇,日本发文量61篇,存在突现性(Burst=12.98),其次是巴西(81)、澳大利亚(38)、英国(30)、加拿大(25)、丹麦(21)和德国(15)等。以日本、英国、新西兰和丹麦等与其他国家之间合作较多,而中国的相关研究仅2篇,国内研究在国际上影响力较小。美国、巴西、日本和澳大利亚4国研究机构处于领先地位,同时具有较大影响力。美国密西西比大学(49)研究成果最多,其次为俄克拉荷马大学(44)、日本东京大学(33)、圣保罗大学(25)和迪肯大学(10),而俄克拉荷马大学发表文献影响力最大,合作机构较多,中心度为0.42,见图2。"
2.3.2 作者与发表期刊分析 频次前5位被引作者TAKARADA Y(255次)、LOENNEKE JP(246次)、ABE T(202次)、YASUDA T(189次)和KARABULUT M(119次),为该研究领域的关键作者,具有较高学术地位。频次,中心度排名靠前期刊为《J Appl Physiol》(401次,1.25),《Med Sci Sport Exer》(398次,0.80),《Eur J Appl Physiol》(397次,0.72),《J Streng Cond Res》(274),《Scand J Med Sci Sport》(271次,0.42),见图3,主要为运动生理学和体育科学领域相关杂志。"
2.4 关键词共现分析 高频次关键词为血管阻断(vascular occlusion,187次)、力量(strength,182次)、血流限制(blood flow restriction,127次)、骨骼肌(skeletal muscle,97次)、肌肥大(muscle hypertrophy,90次);高中心度词为生长激素(growth hormone,1.14)、力量(strength,1.09)、骨骼肌(skeletal muscle,0.59)、适应(adaptation,0.57)、反应(response,0.45),见图4。采用log-likelihood ratio算法(LLR)提取关键词得7个聚类主题词,见图5,模块值(Modularity Q)=0.69> 0.5,聚类结构显著;平均轮廓值(Mean Silhouette)=0.92> 0.7,聚类可信度高,各聚类内部主题词明确,各聚类主要关键词见表2。"
2.5 文献共被引分析 采用LLR算法聚类分析,图谱模块值(Q)=0.73>0.5,聚类结构十分显著,平均轮廓值(MS)=0.70,各聚类可信度较高。绘制时间线视图,图中节点大小与频次成正比;颜色条带越暖,说明引文时间越晚,反之同理,外圈紫色圆环标注为关键节点文献。总结关键节点文献信息,见表4。由图谱可知,血流限制训练主题演进可大致分为奠基萌芽时期(2007年前)、系统成形时期(2008至2015年)、迅速发展时期(2016年后),见图6。 血流限制训练起源于上个世纪60年代,由日本学者首次提出,最早在21世纪初出现相关研究文献。初期主要围绕血流限制训练提高肌力、肌肥大、心血管反应及激素影响变化等内容展开。2007年FUJITA等[2]指出血流限制训练可通过影响下游效应器(核糖体蛋白S6)磷酸化增加,激活哺乳动物雷帕霉素靶蛋白信号通路,以促进肌细胞增殖生长,初步揭示了其肌肥大适应潜在细胞分子机制。2008至2015年该领域研究出现阶段性转折,基础研究领域得到重大进展,以肌纤维募集、激素效应、活性氧物种、细胞肿胀及肌肉损伤等主要理论假说,围绕介导肌肉蛋白信号通路或诱导卫星细胞增殖等热点内容展开深入的基础机制研究[13]。期间FRY等[14]学者成功验证在老年人群中相似肌肉肥大机制,LAURENTINO等[15]研究指出血流限制训练肌肥大适应与肌生长抑制素(Myostatin)及相关生长分化因子的mRNA表达变化有关。 同期,LOENNEKE等[16]提出血流限制训练方法学中影响变量争议,总结既往研究中受试大多使用同一绝对压力,加压数值范围在50-300 mmHg(1 mmHg=0.133 kPa),但被试间不同肢体围度及成分、血压、体位变化和肌肉收缩方式等因素均可影响同一压力下限制的血流量,进而产生不同结果[17]。相关基础、应用研究为血流限制训练的推广提供了多层次的科学依据。2016年至今血流限制训练相关研究迅速发展,被广泛应用在不同领域、不同的人群中,在干预肌肉骨骼功能障碍和心血管循环疾病等主题存在诸多讨论。 "
[1] 王正珍,罗曦娟,王娟.运动是良医:从理论到实践—第62届美国运动医学会年会综述[J].北京体育大学学报,2015,38(8):42-49, 57. [2] FUJITA S, ABE T, DRUMMOND MJ, et al. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol. 2007;103(3):903-910. [3] TRAPPE S, TRAPPE T, GALLAGHER P, et al. Human single muscle fibre function with 84 day bed-rest and resistance exercise. J Physiol. 2004;557(2):501-513. [4] LOENNEKE JP, WILSON GJ, WILSON JM. A Mechanistic Approach to Blood Flow Occlusion. Int J Sports Med. 2010;31(1):1-4. [5] 魏佳,李博,杨威,等.血流限制训练的应用效果与作用机制[J].体育科学,2019,39(4):71-80. [6] 吴旸,李倩,包大鹏.加压力量训练对下肢骨骼肌影响的Meta分析[J].中国体育科技,2019,55(3):20-26. [7] HUGHES L, PATON B, ROSENBLATT B, et al. Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br J Sports Med. 2017;51(13):1003-1011. [8] PATTERSON SD, HUGHES L, WARMINGTON S, et al. Blood flow restriction exercise position stand: considerations of methodology, application, and safety. Front Physiol. 2019;10:533. [9] 李新通,潘玮敏,覃华生,等.血流限制训练:加速肌肉骨骼康复的新方法[J].中国组织工程研究,2019,23(15):2415-2420. [10] 陈悦,陈超美,刘则渊,等.CiteSpace知识图谱的方法论功能[J].科学学研究,2015,33(2):242-253. [11] 石岩,霍炫伊.体育运动风险研究的知识图谱分析[J].体育科学,2017, 37(2):76-86. [12] HWANG PS, WILLOUGHBY DS. Mechanisms behind blood flow-restricted training and its effect toward muscle growth. J Strength Cond Res. 2019; 33(7S):S167-S179. [13] PEARSON SJ, HUSSAIN SR. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 2015;45(2):187-200. [14] FRY CS, GLYNN EL, DRUMMOND MJ, et al. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol. 2010;108(5):1199-1209. [15] LAURENTINO GC, UGRINOWITSCH C, ROSCHEL H, et al. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc. 2012;44(3):406-412. [16] LOENNEKE JP, FAHS CA, ROSSOW LM, et al. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol. 2011;112(8):2903-2912. [17] SCOTT BR, LOENNEKE JP, SLATTERY KM, et al. Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sports Med. 2014;45(3):313-325. [18] TAKADARA Y, TSURUTA T, ISHII N. Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn J Physiol. 2004;54(6):585-592. [19] TAKANO H, MORITA T, IIDA H, et al. Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol. 2005;95(1):65-73. [20] AMERICAN COLLEGE OF SPORTS MEDICINE. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687-708. [21] KARABULUT M, ABE T, SATO Y, et al. The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. Eur J Appl Physiol. 2010;108(1):147-155. [22] DUE U, KLARSKOV N, GRAS S, et al. Pelvic floor muscle training with and without supplementary KAATSU for women with stress urinary incontinence - a randomized controlled pilot study. Neurourol Urodynam. 2019;38(1):379-386. [23] AMANO S, LUDIN AFM, CLIFT R, et al. Effectiveness of blood flow restricted exercise compared with standard exercise in patients with recurrent low back pain: study protocol for a randomized controlled trial. Trials. 2016; 17:81. [24] LOPES KG, BOTTINO DA, FARINATTI P, et al. Strength training with blood flow restriction-a novel therapeutic approach for older adults with sarcopenia? A case report. Clin Interv Aging. 2019;14:1461-1469. [25] HUGHES L, ROSENBLATT B, HADDAD F, et al. Comparing the effectiveness of blood flow restriction and traditional heavy load resistance training in the post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: a UK national health service randomised controlled trial. Sports Med. 2019;49(11):1787-1805. [26] YOW BG, TENNENT DJ, DOWD TC, et al. Blood Flow Restriction Training After Achilles Tendon Rupture. J Foot Ankle Surg. 2018;57(3):635-638. [27] 牛严军,乔玉成,范艳芝.加压训练对受试者肌肉形态和功能的影响:Meta分析[J].首都体育学院学报,2020,32(1):25-34, 86. [28] YASUDA T, OGASAWARA R, SAKAMAKI M, et al. Relationship between limb and trunk muscle hypertrophy following high-intensity resistance training and blood flow-restricted low-intensity resistance training. Clin Physiol Funct Imaging. 2011;31(5):347-351. [29] MAY AK, RUSSELL AP, WARMINGTON SA. Lower body blood flow restriction training may induce remote muscle strength adaptations in an active unrestricted arm. Eur J Appl Physiol. 2018;118(3):617-627. [30] BITTAR ST, PFEIFFER PS, SANTOS HH, et al. Effects of blood flow restriction exercises on bone metabolism: a systematic review. Clin Physiol Funct Imaging. 2018. Doi:10.1111/cpf.12512. [31] CENTNER C, LAUBER B, SEYNNES OR, et al. Low-load blood flow restriction training induces similar morphological and mechanical Achilles tendon adaptations compared with high-load resistance training. J Appl Physiol. 2019;127(6):1660-1667. [32] KIM J, LANG JA, PILANIA N, et al. Effects of blood flow restricted exercise training on muscular strength and blood flow in older adults. Exp Gerontol. 2017;99:127-132. [33] SCOTT BR, LOENNEKE JP, SLATTERY KM, et al. Blood flow restricted exercise for athletes: a review of available evidence. J Sci Med Sport. 2016;19(5):360-367. [34] SHIMIZU R, HOTTA K, YAMAMOTO S, et al. Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. Eur J Appl Physiol. 2016;116(4):749-757. [35] KAMBIC T, NOVAKOVIC M, TOMAZIN K, et al. Blood flow restriction resistance exercise improves muscle strength and hemodynamics, but not vascular function in coronary artery disease patients: a pilot randomized controlled trial. Front Physiol. 2019;10:656. [36] LARKIN KA, MACNEIL RG, DIRAIN M, et al. Blood flow restriction enhances post-resistance exercise angiogenic gene expression. Med Sci Sports Exerc. 2012;44(11):2077-2083. [37] FERGUSON RA, HUNT JEA, LEWIS MP, et al. The acute angiogenic signalling response to low-load resistance exercise with blood flow restriction. Eur J Sport Sci. 2018;18(3):397-406. [38] MONTGOMERY R, PATERSON A, WILLIAMSON C, et al. Blood flow restriction exercise attenuates the exercise-induced endothelial progenitor cell response in healthy, young men. Front Physiol. 2019;10:447. [39] RENZI CP, TANAKA H, SUGAWARA J. Effects of leg blood flow restriction during walking on cardiovascular function. Med Sci Sports Exerc. 2010; 42(4):726-732. [40] PINTO RR, KARABULUT M, POTON R, et al. Acute resistance exercise with blood flow restriction in elderly hypertensive women: haemodynamic, rating of perceived exertion and blood lactate. Clin Physiol Funct Imaging. 2016;38(1):17-24. [41] LOENNEKE JP, WILSON JM, WILSON GJ, et al. Potential safety issues with blood flow restriction training. Scand J Med Sci Sports. 2011;21(4):510-518. [42] PAIVA FM, VIANNA LC, FERNANDES IA, et al. Effects of disturbed blood flow during exercise on endothelial function: a time course analysis. Braz J Medi Biol Res. 2016;49(4):e5100. [43] JENKINS NT, PADILLA J, BOYLE LJ, et al. Disturbed blood flow acutely induces activation and apoptosis of the human vascular endothelium. Hypertension. 2013;61(3):615-621. [44] SPRANGER MD, KRISHNAN AC, LEVY PD, et al. Blood flow restriction training and the exercise pressor reflex: a call for concern. Am J Physiol Heart Circ Physiol. 2015;309(9):H1440-H1452. [45] NASCIMENTO DDC, PETRIZ B, OLIVEIRA SDC, et al. Effects of blood flow restriction exercise on hemostasis: a systematic review of randomized and non-randomized trials. Int J Gen Med. 2019;12:91-100. |
[1] | Xu Feng, Kang Hui, Wei Tanjun, Xi Jintao. Biomechanical analysis of different fixation methods of pedicle screws for thoracolumbar fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1313-1317. |
[2] | Jiang Yong, Luo Yi, Ding Yongli, Zhou Yong, Min Li, Tang Fan, Zhang Wenli, Duan Hong, Tu Chongqi. Von Mises stress on the influence of pelvic stability by precise sacral resection and clinical validation [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1318-1323. |
[3] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[4] | Zhang Yu, Tian Shaoqi, Zeng Guobo, Hu Chuan. Risk factors for myocardial infarction following primary total joint arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1340-1345. |
[5] | Wei Wei, Li Jian, Huang Linhai, Lan Mindong, Lu Xianwei, Huang Shaodong. Factors affecting fall fear in the first movement of elderly patients after total knee or hip arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1351-1355. |
[6] | Wang Jinjun, Deng Zengfa, Liu Kang, He Zhiyong, Yu Xinping, Liang Jianji, Li Chen, Guo Zhouyang. Hemostatic effect and safety of intravenous drip of tranexamic acid combined with topical application of cocktail containing tranexamic acid in total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1356-1361. |
[7] | Xiao Guoqing, Liu Xuanze, Yan Yuhao, Zhong Xihong. Influencing factors of knee flexion limitation after total knee arthroplasty with posterior stabilized prostheses [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1362-1367. |
[8] | Huang Zexiao, Yang Mei, Lin Shiwei, He Heyu. Correlation between the level of serum n-3 polyunsaturated fatty acids and quadriceps weakness in the early stage after total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1375-1380. |
[9] | Zhang Chong, Liu Zhiang, Yao Shuaihui, Gao Junsheng, Jiang Yan, Zhang Lu. Safety and effectiveness of topical application of tranexamic acid to reduce drainage of elderly femoral neck fractures after total hip arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1381-1386. |
[10] | Wang Haiying, Lü Bing, Li Hui, Wang Shunyi. Posterior lumbar interbody fusion for degenerative lumbar spondylolisthesis: prediction of functional prognosis of patients based on spinopelvic parameters [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1393-1397. |
[11] | Lü Zhen, Bai Jinzhu. A prospective study on the application of staged lumbar motion chain rehabilitation based on McKenzie’s technique after lumbar percutaneous transforaminal endoscopic discectomy [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1398-1403. |
[12] | Chen Xinmin, Li Wenbiao, Xiong Kaikai, Xiong Xiaoyan, Zheng Liqin, Li Musheng, Zheng Yongze, Lin Ziling. Type A3.3 femoral intertrochanteric fracture with augmented proximal femoral nail anti-rotation in the elderly: finite element analysis of the optimal amount of bone cement [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1404-1409. |
[13] | Du Xiupeng, Yang Zhaohui. Effect of degree of initial deformity of impacted femoral neck fractures under 65 years of age on femoral neck shortening [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1410-1416. |
[14] | Zhang Shangpu, Ju Xiaodong, Song Hengyi, Dong Zhi, Wang Chen, Sun Guodong. Arthroscopic suture bridge technique with suture anchor in the treatment of acromioclavicular dislocation [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1417-1422. |
[15] | Liang Yan, Zhao Yongfei, Xu Shuai, Zhu Zhenqi, Wang Kaifeng, Liu Haiying, Mao Keya. Imaging evaluation of short-segment fixation and fusion for degenerative lumbar scoliosis assisted by highly selective nerve root block [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1423-1427. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||