[1] CHEN W, ZHAO H, LI Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther. 2023;8:333.
[2] 张华菁, 赵孟楠, 付琛, 等. 线粒体治疗在线粒体相关疾病治疗中的应用及展望[J]. 中国药理学通报,2018,34(4):459-463.
[3] KÜHLBRANDT W. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015;13:89.
[4] XIAN H, LIOU YC. Functions of outer mitochondrial membrane proteins: mediating the crosstalk between mitochondrial dynamics and mitophagy. Cell Death Differ. 2021;28:827-842.
[5] 黄梦玲, 张丽红, 顾昌宇, 等. 粒体相关内质网膜系链蛋白互作对脑缺血/再灌注的作用研究进展[J]. 生理学报,2024, 76(5):801-808.
[6] 陈丽, 董君, 闫朝君, 等. 线粒体嵴重构及其调控[J]. 生理科学进展,2018,49(1): 3-13.
[7] HERRMANN JM, RIEMER J. The intermembrane space of mitochondria. Antioxid Redox Signal. 2010;13:1341-1358.
[8] HABICH M, SALSCHEIDER SL, RIEMER J. Cysteine residues in mitochondrial intermembrane space proteins: more than just import. Br J Pharmacol. 2019;176:514-531.
[9] AL OJAIMI M, SALAH A, EL-HATTAB AW. Mitochondrial Fission and Fusion: Molecular Mechanisms, Biological Functions, and Related Disorders. Membranes. 2022;12(9): 893.
[10] SCOTT I, YOULE RJ. Mitochondrial fission and fusion. Essays Biochem. 2010;47: 85.
[11] ZHAO J, LIU T, JIN S, et al. Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission. EMBO J. 2011; 30:2762-2778.
[12] PALIKARAS K, LIONAKI E, TAVERNARAKIS N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol. 2018;20(9):1013-1022.
[13] 常青, 王晓良. 细胞色素C、线粒体与凋亡[J]. 中国药理学通报,2003,19(3):241-244.
[14] 蒋春笋, 肖伟明, 陈佺. 线粒体分裂、融合与细胞凋亡[J]. 生物物理学报,2007, 23(4):256-264.
[15] CHAN DC. Dissecting mitochondrial fusion. Dev Cell. 2006;11(5):592-594.
[16] GAO S, HU J. Mitochondrial Fusion: The Machineries In and Out. Trends Cell Biol. 2021;31(1):62-74.
[17] VAN DER BLIEK AM, SHEN Q, KAWAJIRI S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol. 2013;5(6):a011072.
[18] CONSORTIUM P. Pan-cancer analysis of whole genomes. Nature. 2020; 578(7793):82-93.
[19] 王天爽, 常杏芝. 线粒体融合蛋白2在骨骼肌线粒体稳态中的调节作用[J]. 国际儿科学杂志,2018,45(5):393-396.
[20] ZHAO Y, GAO C, PAN X, et al. Emerging roles of mitochondria in animal regeneration. Cell Regen. 2023;12:14.
[21] CAO Y, ZHENG J, WAN H, et al. A mitochondrial SCF-FBXL4 ubiquitin E3 ligase complex degrades BNIP3 and NIX to restrain mitophagy and prevent mitochondrial disease. EMBO J. 2023;42:e113033.
[22] LI Y, ZHENG W, LU Y, et al. BNIP3L/NIX-mediated mitophagy: molecular mechanisms and implications for human disease. Cell Death Dis. 2021;13(1):1-11.
[23] LI A, GAO M, LIU B, et al. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease. Cell Death Dis. 2022;13(5):444.
[24] KUMAR SHARMA R, CHAFIK A, BERTOLIN G. Mitochondrial transport, partitioning, and quality control at the heart of cell proliferation and fate acquisition. American Journal of Physiology-Cell Physiology. 2022; 322(2):C311-C325.
[25] WANG C, DU W, SU QP, et al. Dynamic tubulation of mitochondria drives mitochondrial network formation. Cell Res. 2015;25:1108-1120.
[26] WON J, CHOI Y, YUN Y, et al. Biochemical Characterization of the Num1-Mdm36 Complex at the Mitochondria-Plasma Membrane Contact Site. Mol Cells. 2021; 44(4):207-213.
[27] KITTLER J. Regulation of mitochondrial trafficking, function and quality control by the mitochondrial GTPases Miro1 and Miro2. Springer Plus. 2015;4(Suppl 1):L33.
[28] MAIN EN, CRUZ TM, BOWLIN GL. Mitochondria as a therapeutic: a potential new frontier in driving the shift from tissue repair to regeneration. Regen Biomater. 2023:10:rbad070.
[29] JOMOVA K, ALOMAR SY, ALWASEL SH, et al. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol. 2024;98: 1323-1367.
[30] 叶嘉鹏, 王建伟, 马勇, 等. 成骨过程中细胞内能量代谢研究进展[J]. 中国骨质疏松杂志,2021,27(12):1838-1843.
[31] LI BH, XU CZ, LIU Y, et al. Mitochondrial quality control in human health and disease. Mil Med Res. 2024;11(1):32.
[32] 薛蕊, 江小霞, 张宇, 等. 颌骨骨髓间充质干细胞成骨分化过程中线粒体功能变化的研究[J]. 解放军医学院学报,2024, 45(6):666-672.
[33] JIANG G, ZHANG L, ZHENG S, et al. Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. Science. 2019;364(6445):1068-1075.
[34] OFFICE FE. Retraction: Mfn2 overexpression attenuates cardio-cerebrovascular ischemia-reperfusion injury through mitochondrial fusion and activation of the AMPK/Sirt3 signaling. Front Cell Dev Biol. 2022;10: 1006496.
[35] KIPNIS RJ, MELDOLESI JD. Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics. Biochim Biophys Acta. 2014;1843(10):2233-2239.
[36] SUH J, LEE YS. The multifaceted roles of mitochondria in osteoblasts: from energy production to mitochondrial-derived vesicle secretion. J Bone Miner Res. 2024;39: 1205-1214.
[37] 应岚, 卢中秋, 姚咏明. 线粒体融合蛋白2的结构与功能研究进展[J]. 生理科学进展,2016,47(2):108-112.
[38] GIORGI G, MARCHI S, RIMESSI R, et al. The Mitochondrial Ca2+ Uptake and the Fine-Tuning of Aerobic Metabolism. Front Physiol. 2020;11:554904.
[39] CHEN CT, SHIH YRV, KUO TK, et al. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells. 2008; 26(4):960-968.
[40] NING K, LIU S, YANG B, et al. Update on the effects of energy metabolism in bone marrow mesenchymal stem cells differentiation. Mol Metab. 2022;58: 101450.
[41] LIU J, BAO X, HUANG J, et al. TMEM135 maintains the equilibrium of osteogenesis and adipogenesis by regulating mitochondrial dynamics. Metab Clin Exp. 2024;152:155767.
[42] JANDA J, NFONSAM V, CALIENES F, et al. Modulation of ROS levels in fibroblasts by altering mitochondria regulates the process of wound healing. Arch Dermatol Res. 2016; 308:239-248.
[43] MISSIROLI S, GENOVESE I, PERRONE M, et al. The Role of Mitochondria in Inflammation: From Cancer to Neurodegenerative Disorders. J Clin Med. 2020;9(3):740.
[44] KUZNETSOV AV, MARGREITER R, AUSSERLECHNER MJ, et al. The complex interplay between mitochondria, ROS and entire cellular metabolism. Antioxidants (Basel). 2022;11(10):1995.
[45] WEBB M, SIDERIS DP, BIDDLE M. Modulation of mitochondrial dysfunction for treatment of disease. Bioorg Med Chem Lett. 2019; 29:1270-1277.
[46] DERETIC V. Autophagy in inflammation, infection, and immunometabolism. Immunity. 2021;54(3):437-453.
[47] 唐惠玲. 线粒体介导的细胞凋亡的研究进展[J]. 安徽医药,2012,16(11):1696-1699.
[48] DABRAVOLSKI SA, NIKIFOROV NG, ZHURAVLEV AD, et al. The role of altered mitochondrial metabolism in thyroid cancer development and mitochondria-targeted thyroid cancer treatment. Int J Mol Sci. 2021;23(1):460.
[49] SHAO CS, ZHOU XH, MIAO YH, et al. In situ observation of mitochondrial biogenesis as the early event of apoptosis. IScience. 2021; 24:103038.
[50] DUAN C, KUANG L, XIANG X, et al. Drp1 regulates mitochondrial dysfunction and dysregulated metabolism in ischemic injury via Clec16a-, BAX-, and GSH- pathways. Cell Death Dis. 2020;11(4):251.
[51] 卢志伟, 朱新永, 徐恩. 发动蛋白相关蛋白1介导的线粒体分裂与脑缺血[J]. 国际脑血管病杂志,2015,23(4):306-310.
[52] 王钰钢, 范启明, 汤亭亭. AMPK信号通路对骨代谢的调节作用[J]. 中国骨质疏松杂志,2014,20(3):322-326.
[53] CHEN X, JI X, LAO Z, et al. Role of YAP/TAZ in bone diseases: a transductor from mechanics to biology. J Orthop Transl. 2025; 51:13-23.
[54] 韩明媛, 王振波. Hippo-YAP/TAZ通路在肿瘤免疫调节中的作用研究进展[J]. 中国医药科学,2021,11(22):49-52.
[55] KIM J, KIM YH, KWON J, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127(9):3441-3461.
[56] HUANG J, ZHANG J, ZHU X, et al. Emerging role and function of Hippo-YAP/TAZ signaling pathway in musculoskeletal disorders. Stem Cell Res Ther. 2024;15(1):386.
[57] 王莹, 任欣欣, 赵铁军. Hippo/YAP途径在肿瘤细胞信号通路交互调控中的作用[J]. 生物医学,2023,13(1):93-102.
[58] QIANG YW, HU B, CHEN Y, et al. Bortezomib induces osteoblast differentiation via Wnt-independent activation of beta-catenin/TCF signaling. Blood. 2009;113(18):4319-4330.
[59] ZONG Y, LI H, LIAO P, et al. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther. 2024;9(1):124.
[60] BOBKOVA NV, ZHDANOVA DY, BELOSLUDTSEVA NV, et al. Intranasal administration of mitochondria improves spatial memory in olfactory bulbectomized mice. Exp Biol Med. 2022;247(5):416-425.
[61] LIAO HT, CHEN CT. Osteogenic potential: Comparison between bone marrow and adipose-derived mesenchymal stem cells. World J Stem Cells. 2014;6(3):288-295.
[62] BORCHERDING N, BRESTOFF JR. The power and potential of mitochondria transfer. Nature. 2023;623(7986):283-291.
[63] LI H, WANG C, HE T, et al. Mitochondrial Transfer from Bone Marrow Mesenchymal Stem Cells to Motor Neurons in Spinal Cord Injury Rats via Gap Junction. Theranostics. 2019;9(7):2017-2035.
[64] GUO Y, CHI X, WANG Y, et al. Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Res Ther. 2020;11(1):245.
[65] XU C, LIU Z, CHEN X, et al. Bone tissue engineering scaffold materials: Fundamentals, advances, and challenges. Chin Chem Lett. 2024;35(2):109197.
[66] FU H, CHENG J, HU L, et al. Mitochondria-targeting materials and therapies for regenerative engineering. Biomaterials. 2025;316:123023.
[67] WANG S, LIU J, ZHOU L, et al. Research progresses on mitochondrial-targeted biomaterials for bone defect repair. Regen Biomat. 2024;11:rbae082.
[68] 程婧, 魏林, 李苗. 线粒体动力学及线粒体自噬调控机制的研究进展[J]. 生理学报,2020,72(4):475-487.
[69] LOSÓN OC, SONG Z, CHEN H, et al. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell. 2013;24(5):659-667.
[70] PASSMORE JB, CARMICHAEL RE, SCHRADER TA, et al. Mitochondrial fission factor (MFF) is a critical regulator of peroxisome maturation. Biochim Biophys Acta Mol Cell Res. 2020;1867:118709.
[71] SAMANGOUEI P, CRESPO-AVILAN GE, CABRERA-FUENTES H, et al. MiD49 and MiD51: New mediators of mitochondrial fission and novel targets for cardioprotection. Condition Med. 2018;1(5):239-246.
[72] CASSIDY-STONE A, CHIPUK JE, INGERMAN E, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008;14(2):193-204.
[73] YAN J, LIU XH, HAN MZ, et al. Blockage of GSK3β-mediated Drp1 phosphorylation provides neuroprotection in neuronal and mouse models of Alzheimer’s disease. Neurobiol Aging. 2015;36(1):211-227.
[74] DAUBERT MA, YOW E, DUNN G, et al. Novel Mitochondria-Targeting Peptide in Heart Failure Treatment: A Randomized, Placebo-Controlled Trial of Elamipretide. Circulation. Heart Fail. 2017;10(12):e004389.
[75] WANG Z, GUO W, KUANG X, et al. Nanopreparations for mitochondria targeting drug delivery system: current strategies and future prospective. Asian J Pharm Sci, 2017;12:498-508.
[76] HUANG L, SUN Z, SHEN Q, et al. Rational design of nanocarriers for mitochondria-targeted drug delivery. Chinese Chemical Letters, 2022;33(9):4146-4156.
[77] CHEN Z, CHEN L, LYU TD, et al. Targeted mitochondrial nanomaterials in biomedicine: Advances in therapeutic strategies and imaging modalities. Acta Biomaterialia. 2024;186:1-29
|