中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (23): 5906-5914.doi: 10.12307/2026.348

• 组织构建综述 tissue construction review • 上一篇    下一篇

线粒体动力学在骨缺损修复中的作用与机制

周发达1,2,龙智生2   

  1. 1江西中医药大学,江西省南昌市   330006;2江西省人民医院,南昌医学院第一附属医院骨科,江西省南昌市   330006
  • 收稿日期:2025-04-24 接受日期:2025-08-14 出版日期:2026-08-18 发布日期:2025-12-30
  • 通讯作者: 龙智生,博士,副主任医师,江西省人民医院,南昌医学院第一附属医院骨科,江西省南昌市 330006
  • 作者简介:周发达,男,1999年生,江西省南昌市人,汉族,江西中医药大学在读硕士,主要从事骨组织工程再生研究。
  • 基金资助:
    国家自然科学基金项目(32060222),项目负责人:龙智生;江西省卫计委课题(202310014),项目负责人:龙智生

Roles and mechanisms of mitochondrial dynamics in bone defect repair

Zhou Fada1, 2, Long Zhisheng2   

  1. 1Jiangxi University of Chinese Medicine, Nanchang 330006, Jiangxi Province, China; 2Department of Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China 
  • Received:2025-04-24 Accepted:2025-08-14 Online:2026-08-18 Published:2025-12-30
  • Contact: Zhou Fada, MS candidate, Jiangxi University of Chinese Medicine, Nanchang 330006, Jiangxi Province, China; Department of Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
  • About author:Long Zhisheng, PhD, Associate chief physician, Department of Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
  • Supported by:
    National Natural Science Foundation of China, No. 32060222 (to LZS); Jiangxi Provincial Health and Family Planning Commission, No. 202310014 (to LZS)

摘要:


文题释义:
线粒体动力学:描述的是线粒体在细胞内部经历持续性的分裂与融合,以此来保持其网络结构的动态平衡状态。这一机制对于调控线粒体的形状、分布以及数量至关重要,是确保细胞稳定性的关键因素。线粒体动力学的核心环节涵盖线粒体的融合与分裂两大过程,它们共同作用于维持线粒体的质量及功能处于最佳状态。
骨缺损修复:是指骨骼结构因创伤、疾病、感染、手术或先天性因素导致的局部或全部骨组织的缺失或破坏后,由多种细胞与生物因子共同参与、相互作用的病理生理过程。

背景:线粒体的动态变化如融合、分裂和自噬等,对于保持线粒体的健康稳态和细胞平衡特别重要。越来越多的研究表明,骨缺损愈合过程中这些线粒体的动态变化极其重要,深入研究线粒体动态过程为治疗骨缺损开创了新的可能。
目的:探究线粒体动力学的作用机制与原理以及在骨缺损修复方面的研究与进展。
方法:检索中国知网、万方数据库、PubMed、Web of Science数据库1990-2024年发表的相关文献,中文检索词为线粒体动力学,骨缺损修复,线粒体融合与分裂,骨细胞;英文检索词为mitochondrial dynamics,bone defect repair,mitochondrial dysfunction。对所有检索到的文献按照严格的标准逐一进行筛选、分析及整理,共纳入77篇文献,其中中文15篇、英文62篇,对所纳入的文献进行综合分析。
结果与结论:①骨缺损修复受到多种细胞和分子信号通路的精细调控,整个过程是相当复杂的,线粒体动力学在此过程中特别重要,它们能够影响骨细胞功能和骨代谢,进一步促进骨缺损的修复;②未来可以重点深入开展一些关于线粒体动力学分子机制的研究,研发新型纳米靶向颗粒和线粒体临床药物,为线粒体动力学在骨缺损修复的临床应用创造更多可能。
https://orcid.org/0009-0000-9228-1732 (周发达);https://orcid.org/0000-0003-4899-6049 (龙智生)


中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 线粒体动力学, 骨缺损修复, 线粒体自噬, 融合, 分裂, 细胞功能, 骨代谢

Abstract: BACKGROUND: Mitochondrial dynamic changes, such as fusion, fission and autophagy, are particularly important for maintaining mitochondrial health homeostasis and cellular balance. Increasing studies have shown that these mitochondrial dynamic changes play a significant role in the healing process of bone defects. In-depth research on mitochondrial dynamics creates new possibilities for the treatment of bone defects.
OBJECTIVE: To explore the mechanism and principles of mitochondrial dynamics and its research and development in bone defect repair.
METHODS: Relevant literature was retrieved from databases such as CNKI, WanFang Data, and PubMed published from 1990 to 2024 using the keywords of “mitochondrial dynamics, bone defect repair, mitochondrial fusion and fission, osteocytes” in Chinese and “mitochondrial dynamics, bone defect repair, mitochondrial dysfunction” in English. All retrieved documents were strictly screened, analyzed, and sorted one by one according to the inclusion criteria. A total of 77 documents were included for comprehensive analysis, consisting of 15 Chinese documents and 62 English documents. 
RESULTS AND CONCLUSION: (1) The repair of bone defects is finely regulated by a variety of cells and molecular signaling pathways, which is a highly complex process. Mitochondrial dynamics play a particularly critical role in this process, as they can significantly influence bone cell function and bone metabolism, thereby further promoting the repair of bone defects. (2) Future research could focus on in-depth exploration of the molecular mechanisms of mitochondrial dynamics and development of novel nano-targeted particles and clinical mitochondrial drugs, thereby creating more possibilities for the clinical application of mitochondrial dynamics in bone defect repair.



Key words: mitochondrial dynamics, bone defect repair, mitophagy, fusion, fission, cellular function, bone metabolism

中图分类号: