[1] TIAN HY, HUANG BY, NIE HF, et al. The Interplay between Mitochondrial Dysfunction and Ferroptosis during Ischemia-Associated Central Nervous System Diseases. Brain Sci. 2023;13(10):1367.
[2] 范平龙,赖华清,张钊,等.缺血性脑卒中后小胶质细胞胞葬作用的研究进展[J].中国药理学通报,2024,40(8):1407-1412.
[3] WANG XX, LI M, XU XW, et al. BNIP3-mediated mitophagy attenuates hypoxic-ischemic brain damage in neonatal rats by inhibiting ferroptosis through P62-KEAP1-NRF2 pathway activation to maintain iron and redox homeostasis. Acta Pharmacol Sin. 2025;46(1):33-51.
[4] 郭雪微. PIEZO1调控急性损伤致肺内皮细胞铁死亡的机制研究[D].锦州:锦州医科大学,2022.
[5] LI J, JIA YC, DING YX, et al. The crosstalk between ferroptosis and mitochondrial dynamic regulatory networks. Int J Biol Sci. 2023;19(9):2756-2771.
[6] WANG Y, YAN Q, SHI Y, et al. Copper Toxicity in Animals: A Review. Biol Trace Elem Res. 2025;203(5):2675-2686.
[7] 邹鑫.铁死亡相关基因FDFT1可作为肾透明细胞癌的潜在生物标志物[D].南昌:南昌大学,2023.
[8] 易威威. HO-1通过诱导线粒体途径的自噬来抑制人髓核细胞衰老和退变[D]. 重庆:重庆医科大学,2020.
[9] LIU Y, LU S, WU LL, et al. The diversified role of mitochondria in ferroptosis in cancer. Cell Death Dis. 2023;14(8):519.
[10] WANG W, LU K, JIANG X, et al. Ferroptosis inducers enhanced cuproptosis induced by copper ionophores in primary liver cancer. J Exp Clin Cancer Res. 2023;42(1):142.
[11] 刘娟,李彦杰,秦合伟,等.线粒体质量控制系统失调介导帕金森病的作用机制[J].实用医学杂志,2024,40(11):1479-1482.
[12] KREIMENDAHL S, RASSOW J. The Mitochondrial Outer Membrane Protein Tom70-Mediator in Protein Traffic, Membrane Contact Sites and Innate Immunity. Int J Mol Sci. 2020;21(19):7262.
[13] FERREIRA C, VIANA SD, REIS F. Gut Microbiota Dysbiosis-Immune Hyperresponse-Inflammation Triad in Coronavirus Disease 2019 (COVID-19): Impact of Pharmacological and Nutraceutical Approaches. Microorganisms. 2020;8(10):1514.
[14] LIANG Y, MENG Z, CHEN Y, et al. A Data Fusion Orientation Algorithm Based on the Weighted Histogram Statistics for Vector Hydrophone Vertical Array. Sensors (Basel). 2020;20(19):5619.
[15] ZHU YY, ZHANG Q, JIA YC, et al. Protein disulfide isomerase plays a crucial role in mediating chemically-induced, glutathione depletion-associated hepatocyte injury in vitro and in vivo. Cell Commun Signal. 2024;22(1):431.
[16] SCHERGER M, BOLLI E, ANTUNES ARP, et al. Transient Multivalent Nanobody Targeting to CD206-Expressing Cells via PH-Degradable Nanogels. Cells. 2020;9(10):2222.
[17] PENG J, DAI X, ZHANG T, et al. Copper as the driver of the lncRNA-TCONS-6251/miR-novel-100/TC2N axis: Unraveling ferroptosis in duck kidney. Int J Biol Macromol. 2024; 282(Pt 2):136797.
[18] WANG M, MA F, ZHONG G, et al. Copper exposure promotes ferroptosis of chicken (Gallus gallus) kidney cells and causes kidney injury. J Trace Elem Med Biol. 2024;86:127501.
[19] 王晓蓓,麦迪乃·赛福丁,白睿,等.基于孟德尔随机研究血清炎症因子、生化指标及经颅黑质超声在帕金森病患者中的价值[J].齐齐哈尔医学院学报,2024, 45(7):608-613.
[20] 于守水.线粒体钙单向转运体对神经母细胞瘤细胞自噬和线粒体自噬的作用[D].青岛:青岛大学,2017.
[21] 韦云耿.矽尘诱导肺泡巨噬细胞焦亡与线粒体自噬相互作用调控矽肺纤维化进展的作用与机制研究[D].沈阳:中国医科大学,2023.
[22] ONISHI M, YAMANO K, SATO M, et al. Molecular mechanisms and physiological functions of mitophagy. EMBO J. 2021; 40(3):e104705.
[23] 张莹莹,叶周恒,刘昕,等.SIRT3在心脏衰老中的作用机制[J].生命的化学,2023, 43(2):215-220.
[24] PICCA A, FAITG J, AUWERX J, et al. Mitophagy in human health, ageing and disease. Nat Metab. 2023;5(12):2047-2061.
[25] DENISENKO TV, GOGVADZE V, ZHIVOTOVSKY B. Mitophagy in carcinogenesis and cancer treatment. Discov Oncol. 2021;12(1):58.
[26] YANG Y, CHEN H, HUANG S, et al. BOK-engaged mitophagy alleviates neuropathology in Alzheimer’s disease. Brain. 2025;148(2):432-447.
[27] TITUS AS, SUNG EA, ZABLOCKI D, et al. Mitophagy for cardioprotection. Basic Res Cardiol. 2023;118(1):42.
[28] SAITO T, HAMANO K, SADOSHIMA J. Molecular mechanisms and clinical implications of multiple forms of mitophagy in the heart. Cardiovasc Res. 2021;117(14): 2730-2741.
[29] MASALDAN S, CALLEGARI S, DEWSON G. Therapeutic targeting of mitophagy in Parkinson’s disease. Biochem Soc Trans. 2022;50(2):783-797.
[30] SOUTAR MPM, MELANDRI D, O’CALLAGHAN B, et al. Regulation of mitophagy by the NSL complex underlies genetic risk for Parkinson’s disease at 16q11.2 and MAPT H1 loci. Brain. 2022;145(12):4349-4367.
[31] PEKER N, DONIPADI V, SHARMA M, et al. Loss of Parkin impairs mitochondrial function and leads to muscle atrophy. Am J Physiol Cell Physiol. 2018;315(2):C164-C185.
[32] BLAGOV AV, GONCHAROV AG, BABICH OO, et al. Prospects for the Development of Pink1 and Parkin Activators for the Treatment of Parkinson’s Disease. Pharmaceutics. 2022;14(11):2514.
[33] THOBOIS S. USP30: a new promising target for Parkinson’s disease? Mov Disord. 2015; 30(3):340.
[34] SINGH F, PRESCOTT AR, ROSEWELL P, et al. Pharmacological rescue of impaired mitophagy in Parkinson’s disease-related LRRK2 G2019S knock-in mice. Elife. 2021;10: e67604.
[35] FRANCO F, BEVILACQUA A, WU RM, et al. Regulatory circuits of mitophagy restrict distinct modes of cell death during memory CD8+ T cell formation. Sci Immunol. 2023; 8(87):eadf7579.
[36] YAN J, SUN W, SHEN M, et al. Idebenone improves motor dysfunction, learning and memory by regulating mitophagy in MPTP-treated mice. Cell Death Discov. 2022;8(1):28.
[37] CHEN M, WANG X, BAO S, et al. Orchestrating AMPK/mTOR signaling to initiate melittin-induced mitophagy: A neuroprotective strategy against Parkinson’s disease. Int J Biol Macromol. 2024;281(Pt 1): 136119.
[38] LIU C, LI X, CHEN M, et al. Characterization and neurotherapeutic evaluation of venom polypeptides identified from Vespa magnifica: The role of Mastoparan-M in Parkinson’s disease intervention. J Ethnopharmacol. 2025;343:119481.
[39] 李佳蔚,许红阳.铁死亡在器官移植缺血-再灌注损伤中的作用与展望[J].器官移植,2023,14(5):662-668.
[40] CHENG X, ZHAO F, KE B, et al. Harnessing Ferroptosis to Overcome Drug Resistance in Colorectal Cancer: Promising Therapeutic Approaches. Cancers (Basel). 2023;15(21):5209.
[41] 农复香,蒋志雄,李英豪,等.外泌体调控铁死亡在疾病诊断治疗中的应用与作用[J].中国组织工程研究,2023,27(15): 2443-2452.
[42] GAO G, YOU L, ZHANG J, et al. Brain Iron Metabolism, Redox Balance and Neurological Diseases. Antioxidants (Basel). 2023;12(6):1289.
[43] YAO Z, JIAO Q, DU X, et al. Ferroptosis in Parkinson’s disease -- The iron-related degenerative disease. Ageing Res Rev. 2024;101:102477.
[44] 戴美华.艾司氯胺酮预处理对大鼠脑缺血再灌注损伤的影响及与Nrf2/HO-1信号通路的关系[D].广州:广州医科大学,2023.
[45] LIU T, WANG P, YIN H, et al. Rapamycin reverses ferroptosis by increasing autophagy in MPTP/MPP+-induced models of Parkinson’s disease. Neural Regen Res. 2023;18(11):2514-2519.
[46] AN F, ZHANG J, GAO P, et al. New insight of the pathogenesis in osteoarthritis: the intricate interplay of ferroptosis and autophagy mediated by mitophagy/chaperone-mediated autophagy. Front Cell Dev Biol. 2023;11:1297024.
[47] 孟繁星.颅内铁离子超载在脊髓损伤后中枢性疼痛中的作用研究[D].重庆:第三军医大学,2017.
[48] LI T, SUN M, SUN Q, et al. PM2.5-induced iron homeostasis imbalance triggers cardiac hypertrophy through ferroptosis in a selective autophagy crosstalk manner. Redox Biol. 2024;72:103158.
[49] PENG Z, DING YN, YANG ZM, et al. Neuron-targeted liposomal coenzyme Q10 attenuates neuronal ferroptosis after subarachnoid hemorrhage by activating the ferroptosis suppressor protein 1/coenzyme Q10 system. Acta Biomater. 2024;179: 325-339.
[50] ZHU J, CAI Y, KONG M, et al. Design, Synthesis, and Biological Evaluation for First GPX4 and CDK Dual Inhibitors. J Med Chem. 2024;67(4):2758-2776.
[51] LI X, RAN Q, HE X, et al. HO-1 upregulation promotes mitophagy-dependent ferroptosis in PM2.5-exposed hippocampal neurons. Ecotoxicol Environ Saf. 2024;277:116314.
[52] LONG Z, LUO Y, YU M, et al. Targeting ferroptosis: a new therapeutic opportunity for kidney diseases. Front Immunol. 2024; 15:1435139.
[53] PRADHAN SH, LIU JY, SAYES CM. Evaluating Manganese, Zinc, and Copper Metal Toxicity on SH-SY5Y Cells in Establishing an Idiopathic Parkinson’s Disease Model. Int J Mol Sci. 2023;24(22):16129.
[54] SCOLARI GROTTO F, GLASER V. Are high copper levels related to Alzheimer’s and Parkinson’s diseases? A systematic review and meta-analysis of articles published between 2011 and 2022. Biometals. 2024; 37(1):3-22.
[55] GROMADZKA G, WILKANIEC A, TARNACKA B, et al. The Role of Glia in Wilson’s Disease: Clinical, Neuroimaging, Neuropathological and Molecular Perspectives. Int J Mol Sci. 2024;25(14):7545.
[56] DAVIES KM, MERCER JF, CHEN N, et al. Copper dyshomoeostasis in Parkinson’s disease: implications for pathogenesis and indications for novel therapeutics. Clin Sci (Lond). 2016;130(8):565-574.
[57] LIDDELL JR, WHITE AR. Nexus between mitochondrial function, iron, copper and glutathione in Parkinson’s disease. Neurochem Int. 2018;117:126-138.
[58] GROMADZKA G, TARNACKA B, FLAGA A, et al. Copper Dyshomeostasis in Neurodegenerative Diseases-Therapeutic Implications. Int J Mol Sci. 2020;21(23):9259.
[59] HUANG M, ZHANG Y, LIU X. The mechanism of cuproptosis in Parkinson’s disease. Ageing Res Rev. 2024;95:102214.
[60] GIL-BEA FJ, ALDANONDO G, LASA-FERNÁNDEZ H, et al. Insights into the mechanisms of copper dyshomeostasis in amyotrophic lateral sclerosis. Expert Rev Mol Med. 2017;19:e7.
[61] RECZEK CR, BIRSOY K, KONG H, et al. A CRISPR screen identifies a pathway required for paraquat-induced cell death. Nat Chem Biol. 2017;13(12):1274-1279.
[62] FU Y, ZENG S, WANG Z, et al. Mechanisms of Copper-Induced Autophagy and Links with Human Diseases. Pharmaceuticals (Basel). 2025;18(1):99.
[63] SCHOLEFIELD M, UNWIN RD, COOPER GJS. Shared perturbations in the metallome and metabolome of Alzheimer’s, Parkinson’s, Huntington’s, and dementia with Lewy bodies: A systematic review. Ageing Res Rev. 2020;63:101152.
[64] LAUTERBACH EC. Six psychotropics for pre-symptomatic & early Alzheimer’s (MCI), Parkinson’s, and Huntington’s disease modification. Neural Regen Res. 2016;11(11):1712-1726.
[65] TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254-1261.
[66] SONG X, LIU T, YU L, et al. OTUD5 Protects Dopaminergic Neurons by Promoting the Degradation of α-Synuclein in Parkinson’s Disease Model. Adv Sci (Weinh). 2025;12(7):e2406700.
[67] LI X, WANG W, PAN S, et al. Exploring heat shock proteins as therapeutic targets for Parkinson’s disease. Biochem Pharmacol. 2024;230(Pt 3):116633.
[68] 孙双一,贺新新,陈雯桐,等.双硫死亡相关基因对结直肠癌预后和药物敏感性的预测价值[J].复旦学报(医学版), 2024.51(4):473-483.
[69] 李梦.皮肤活检评价自噬异常调控参与帕金森病发病机制的研究[D].郑州:郑州大学,2014.
[70] DING XS, GAO L, HAN Z, et al. Ferroptosis in Parkinson’s disease: Molecular mechanisms and therapeutic potential. Ageing Res Rev. 2023;91:102077.
[71] YANG K, ZENG L, ZENG J, et al. Research progress in the molecular mechanism of ferroptosis in Parkinson’s disease and regulation by natural plant products. Ageing Res Rev. 2023;91:102063.
[72] TIAN Y, LU J, HAO X, et al. FTH1 Inhibits Ferroptosis Through Ferritinophagy in the 6-OHDA Model of Parkinson’s Disease. Neurotherapeutics. 2020;17(4):1796-1812.
[73] WANG G, ZHUANG W, ZHOU Y, et al. 17β-estradiol alleviated ferroptotic neuroinflammation by suppressing ATF4 in mouse model of Parkinson’s disease. Cell Death Discov. 2024;10(1):507.
[74] LIU C, LIU Z, FANG Y, et al. Exposure to the environmentally toxic pesticide maneb induces Parkinson’s disease-like neurotoxicity in mice: A combined proteomic and metabolomic analysis. Chemosphere. 2022;308(Pt 2):136344.
[75] ZHOU M, XU K, GE J, et al. Targeting Ferroptosis in Parkinson’s Disease: Mechanisms and Emerging Therapeutic Strategies. Int J Mol Sci. 2024;25(23):13042.
[76] 何云凌.低氧下BNIP3翻译后修饰对线粒体自噬的调控作用[D].北京:军事科学院,2018.
[77] 裴卓.铁死亡调控特发性肺纤维化发生发展的分子机制研究[D].西安:中国人民解放军空军军医大学,2022.
[78] 张颖.铜暴露诱导认知障碍及神经毒性的机制研究[D].南京:东南大学,2022.
[79] LI Y, SUN W, YUAN S, et al. The role of cuproptosis in gastric cancer. Front Immunol. 2024;15:1435651.
[80] BELLOLI S, MORARI M, MURTAJ V, et al. Translation Imaging in Parkinson’s Disease: Focus on Neuroinflammation. Front Aging Neurosci. 2020;12:152.
[81] TANG YH, WU L, HUANG HL, et al. Hydrogen sulfide antagonizes formaldehyde-induced ferroptosis via preventing ferritinophagy by upregulation of GDF11 in HT22 cells. Toxicology. 2023; 491:153517.
[82] FOLTYNIE T, GANDHI S, GONZALEZ-ROBLES C, et al. Towards a multi-arm multi-stage platform trial of disease modifying approaches in Parkinson’s disease. Brain. 2023;146(7):2717-2722.
[83] JING H, WANG S, WANG M, et al. Isobavachalcone Attenuates MPTP-Induced Parkinson’s Disease in Mice by Inhibition of Microglial Activation through NF-κB Pathway. PLoS One. 2017; 12(1):e0169560.
[84] LIU X, LIU Y, LIU J, et al. Correlation between the gut microbiome and neurodegenerative diseases: a review of metagenomics evidence. Neural Regen Res. 2024;19(4):833-845.
[85] OUTEIRO TF, HARVEY K, DOMINGUEZ-MEIJIDE A, et al. LRRK2, alpha-synuclein, and tau: partners in crime or unfortunate bystanders? Biochem Soc Trans. 2019; 47(3):827-838.
[86] MENG W, CHAO W, KAIWEI Z, et al. Bioactive compounds from Chinese herbal plants for neurological health: mechanisms, pathways, and functional food applications. Front Nutr. 2025;12:1537363.
[87] KUJAWSKA M, JODYNIS-LIEBERT J. Polyphenols in Parkinson’s Disease: A Systematic Review of In Vivo Studies. Nutrients. 2018;10(5):642.
|