[1] WELT CK. Primary Ovarian Insufficiency: A More Accurate Term for Premature Ovarian Failure. Clin Endocrinol (Oxf). 2008;68(4):499-509.
[2] JANKOWSKA K. Premature Ovarian Failure. Prz Menopauzalny. 2017; 16(2):51-56.
[3] 徐才秀,戴银英,郭苏苏.性激素六项检查在女性不孕症诊断中的临床应用价值分析[J].临床医学工程,2023,30(12):1701-1702.
[4] HANSEN LM, BATZER FR, GUTMANN JN, et al. Evaluating Ovarian Reserve: Follicle Stimulating Hormone and Oestradiol Variability During Cycle Days 2-5. Hum Reprod. 1996;11(3):486-489.
[5] SILLIMAN E, CHUNG EH, FITZPATRICK E, et al. Evaluation of at-Home Serum Anti-Mullerian Hormone Testing: A Head-to-Head Comparison Study. Reprod Biol Endocrinol. 2022;20(1):131.
[6] TATANG C, ARREDONDO BT, BERGAMASCO A, et al. Human Papillomavirus Vaccination and Premature Ovarian Failure: A Disproportionality Analysis Using the Vaccine Adverse Event Reporting System. Drugs Real World Outcomes. 2022;9(1):79-90.
[7] WESEVICH V, KELLEN AN, PAL L. Recent advances in understanding primary ovarian insufficiency. F1000Res. 2020;9:F1000 Faculty Rev-1101.
[8] CHON SJ, UMAIR Z, YOON MS. Premature Ovarian Insufficiency: Past, Present, and Future. Front Cell Dev Biol. 2021;9:672890.
[9] ARMENI E. Diagnostic Challenges in Suspected Premature Ovarian Insufficiency. Case Rep Womens Health. 2022;36:e453.
[10] ASGARPOUR K, SHOJAEI Z, AMIRI F, et al. Exosomal Micrornas Derived From Mesenchymal Stem Cells: Cell-to-Cell Messages. Cell Commun Signal. 2020;18(1):149.
[11] HUANG M, LIU Y, ZHANG L, et al. Advancements in Research On Mesenchymal Stem-Cell-Derived Exosomal Mirnas: A Pivotal Insight Into Aging and Age-Related Diseases. Biomolecules. 2024;14(11):1354.
[12] TESFAYE D, GEBREMEDHN S, SALILEW-WONDIM D, et al. Micrornas: Tiny Molecules with a Significant Role in Mammalian Follicular and Oocyte Development. Reproduction. 2018;155(3):R121-R135.
[13] JU C, LIU D. Exosomal Micrornas From Mesenchymal Stem Cells: Novel Therapeutic Effect in Wound Healing. Tissue Eng Regen Med. 2023;20(5):647-660.
[14] YANG M, LIN L, SHA C, et al. Bone Marrow Mesenchymal Stem Cell-Derived Exosomal Mir-144-5P Improves Rat Ovarian Function After Chemotherapy-Induced Ovarian Failure by Targeting Pten. Lab Invest. 2020;100(3):342-352.
[15] LIU M, XIAO B, ZHU Y, et al. Microrna-144-3P Protects Against Chemotherapy-Induced Apoptosis of Ovarian Granulosa Cells and Activation of Primordial Follicles by Targeting Map3K9. Eur J Med Res. 2023;28(1):264.
[16] XIAO GY, CHENG CC, CHIANG YS, et al. Exosomal Mir-10a Derived From Amniotic Fluid Stem Cells Preserves Ovarian Follicles After Chemotherapy. Sci Rep.2016;6:23120.
[17] SANDHU R, REIN J, D’ARCY M, et al. Overexpression of Mir-146a in Basal-Like Breast Cancer Cells Confers Enhanced Tumorigenic Potential in Association with Altered P53 Status. Carcinogenesis. 2014;35(11):2567-2575.
[18] SUN B, MA Y, WANG F, et al. Mir-644-5P Carried by Bone Mesenchymal Stem Cell-Derived Exosomes Targets Regulation of P53 to Inhibit Ovarian Granulosa Cell Apoptosis. Stem Cell Res Ther. 2019;10(1):360.
[19] GAO T, CHEN Y, HU M, et al. Microrna-22-3P in Human Umbilical Cord Mesenchymal Stem Cell-Secreted Exosomes Inhibits Granulosa Cell Apoptosis by Targeting Klf6 and Atf4-Atf3-Chop Pathway in Pof Mice. Apoptosis. 2023;28(7-8):997-1011.
[20] FU X, HE Y, WANG X, et al. Overexpression of Mir-21 in Stem Cells Improves Ovarian Structure and Function in Rats with Chemotherapy-Induced Ovarian Damage by Targeting Pdcd4 and Pten to Inhibit Granulosa Cell Apoptosis. Stem Cell Res Ther. 2017;8(1):187.
[21] ZHANG Q, SUN J, HUANG Y, et al. Human Amniotic Epithelial Cell-Derived Exosomes Restore Ovarian Function by Transferring Micrornas Against Apoptosis. Mol Ther Nucleic Acids. 2019;16:407-418.
[22] ZHANG Q, BU S, SUN J, et al. Paracrine Effects of Human Amniotic Epithelial Cells Protect Against Chemotherapy-Induced Ovarian Damage. Stem Cell Res Ther. 2017;8(1):270.
[23] LIU T, LIN J, CHEN C, et al. Microrna-146B-5P Overexpression Attenuates Premature Ovarian Failure in Mice by Inhibiting the Dab2Ip/Ask1/P38-Mapk Pathway and Gammah2a.X Phosphorylation. Cell Prolif. 2021;54(1):e12954.
[24] QU Q, LIU L, CUI Y, et al. Mir-126-3P Containing Exosomes Derived From Human Umbilical Cord Mesenchymal Stem Cells Promote Angiogenesis and Attenuate Ovarian Granulosa Cell Apoptosis in a Preclinical Rat Model of Premature Ovarian Failure. Stem Cell Res Ther. 2022;13(1):352.
[25] HONG DS, KANG YK, BORAD M, et al. Phase 1 Study of Mrx34, a Liposomal Mir-34a Mimic, in Patients with Advanced Solid Tumours. Br J Cancer. 2020;122(11):1630-1637.
[26] BEG MS, BRENNER AJ, SACHDEV J, et al. Phase I Study of Mrx34, a Liposomal Mir-34a Mimic, Administered Twice Weekly in Patients with Advanced Solid Tumors. Invest New Drugs. 2017;35(2):180-188.
[27] REID G, KAO SC, PAVLAKIS N, et al. Clinical Development of Targomirs, a Mirna Mimic-Based Treatment for Patients with Recurrent Thoracic Cancer. Epigenomics. 2016;8(8):1079-1085.
[28] VAN ZANDWIJK N, PAVLAKIS N, KAO SC, et al. Safety and Activity of Microrna-Loaded Minicells in Patients with Recurrent Malignant Pleural Mesothelioma: A First-in-Man, Phase 1, Open-Label, Dose-Escalation Study. Lancet Oncol. 2017;18(10):1386-1396.
[29] BALDARI S, DI ROCCO G, MAGENTA A, et al. Extracellular Vesicles-Encapsulated Microrna-125B Produced in Genetically Modified Mesenchymal Stromal Cells Inhibits Hepatocellular Carcinoma Cell Proliferation. Cells. 2019;8(12):1560.
[30] GALLANT-BEHM CL, PIPER J, LYNCH JM, et al. A Microrna-29 Mimic (Remlarsen) Represses Extracellular Matrix Expression and Fibroplasia in the Skin. J Invest Dermatol. 2019;139(5):1073-1081.
[31] DONOSO-QUEZADA J, AYALA-MAR S, GONZALEZ-VALDEZ J. The Role of Lipids in Exosome Biology and Intercellular Communication: Function, Analytics and Applications. Traffic. 2021;22(7):204-220.
[32] KOGA Y, YASUNAGA M, MORIYA Y, et al. Exosome Can Prevent Rnase From Degrading Microrna in Feces. J Gastrointest Oncol. 2011;2(4): 215-222.
[33] KRYLOVA SV, FENG D. The Machinery of Exosomes: Biogenesis, Release, and Uptake. Int J Mol Sci. 2023;24(2):1337.
[34] QU Q, LIU L, CUI Y, et al. Mir-126-3P Containing Exosomes Derived From Human Umbilical Cord Mesenchymal Stem Cells Promote Angiogenesis and Attenuate Ovarian Granulosa Cell Apoptosis in a Preclinical Rat Model of Premature Ovarian Failure. Stem Cell Res Ther. 2022;13(1):352.
[35] WEN SW, ZHANG YF, LI Y, et al. Characterization and Effects of Mir-21 Expression in Esophageal Cancer. Genet Mol Res. 2015;14(3):8810-8818.
[36] WANG S, AURORA AB, JOHNSON BA, et al. The Endothelial-Specific Microrna Mir-126 Governs Vascular Integrity and Angiogenesis. Dev Cell. 2008;15(2):261-271.
[37] FISH JE, SANTORO MM, MORTON SU, et al. Mir-126 Regulates Angiogenic Signaling and Vascular Integrity. Dev Cell. 2008;15(2):272-284.
[38] YANG X, ZHOU Y, PENG S, et al. Differentially Expressed Plasma Micrornas in Premature Ovarian Failure Patients and the Potential Regulatory Function of Mir-23a in Granulosa Cell Apoptosis. Reproduction. 2012;144(2):235-244.
[39] NIE M, YU S, PENG S, et al. Mir-23a and Mir-27a Promote Human Granulosa Cell Apoptosis by Targeting Smad5. Biol Reprod. 2015; 93(4):98.
[40] 娄季武,何凤屏,刘彦慧,等.原发性卵巢功能不全患者血清外泌体miRNA-146、HIF-1α和ROS的表达及临床意义[C]//四川省国际医学交流促进会.医学护理创新学术交流会论文集(智慧医学篇).东莞市妇幼保健院;粤北人民医院,2024:244-248.DOI:10.26914/c.cnkihy.2024.049396.
[41] 仝慧杰,刘丽丽,范志刚,等.卵巢早衰患者血浆中Mirna-503的作用及对内皮祖细胞的影响[J].实用医学杂志,2019,35(17):2765-2769.
[42] ALDAKHEEL FM, ABUDERMAN AA, ALDURAYWISH SA, et al. Microrna-21 Inhibits Ovarian Granulosa Cell Proliferation by Targeting Snhg7 in Premature Ovarian Failure with Polycystic Ovary Syndrome. J Reprod Immunol. 2021;146:103328.
[43] DU R, CHENG X, JI J, et al. Mechanism of Ferroptosis in a Rat Model of Premature Ovarian Insufficiency Induced by Cisplatin. Sci Rep. 2023;13(1):4463.
[44] LEE EH, HAN SE, PARK MJ, et al. Establishment of Effective Mouse Model of Premature Ovarian Failure Considering Treatment Duration of Anticancer Drugs and Natural Recovery Time. J Menopausal Med. 2018;24(3):196-203.
[45] SZELIGA A, CALIK-KSEPKA A, MACIEJEWSKA-JESKE M, et al. Autoimmune Diseases in Patients with Premature Ovarian Insufficiency-Our Current State of Knowledge. Int J Mol Sci. 2021;22(5):2594.
[46] CAO LB, LEUNG CK, LAW PW, et al. Systemic Changes in a Mouse Model of Vcd-Induced Premature Ovarian Failure. Life Sci. 2020;262:118543.
[47] NOURI N, SHAREGHI-OSKOUE O, AGHEBATI-MALEKI L, et al. Role of Mirnas Interference On Ovarian Functions and Premature Ovarian Failure. Cell Commun Signal. 2022;20(1):198.
|