[1] 陈淑琴,刘刚,吴芮仁,等.运动员损伤的影响因素及康复策略研究[J].体育科学进展,2024,12(1):43-49.
[2] 刘美含,吴雪萍,丁海勇,等.冬残奥运动项目损伤特征、风险因素及预防措施[J].武汉体育学院学报,2021,55(2):
93-100.
[3] 何怡娴.运动生物化学检测与体育运动疲劳及过度训练的诊断:评《运动生物化学》 [J].化学学报,2024,82(3):378.
[4] KRAEMER WJ, RATAMESS NA, FLANAGAN SD, et al. Understanding the science of resistance training: An evolutionary perspective. Sports Med. 2017;47(12):2415-2435.
[5] PLUNCEVIC GLIGOROSKA J, MANCHEVSKA S, PETROVSKA S, et al. Physiological mechanisms of muscle hypertrophy. Res Phys Educ Sport Health. 2022;11(1):153-160.
[6] 李海鹏,刘宇.肌肉衰减症的动态识解及对我国运动科学研究的启示[J].体育科学,2020,40(9):61-73.
[7] HU H, YANG W, ZENG Q, et al. Promising application of pulsed electromagnetic fields (PEMFs) in musculoskeletal disorders. Biomed Pharmacother. 2020;131:110767.
[8] SU D, ZHAO Z, YIN D, et al. Promising application of pulsed electromagnetic fields on tissue repair and regeneration. Prog Biophys Mol Biol. 2024;187:36-50.
[9] CIOMBOR DM, AARON RK, WANG S, et al. Modification of osteoarthritis by pulsed electromagnetic field—A morphological study. Osteoarthritis Cartilage. 2003;11(6):455-462.
[10] DAISH C, BLANCHARD R, FOX K, et al. The application of pulsed electromagnetic fields (PEMFs) for bone fracture repair: Past and perspective findings. Ann Biomed Eng. 2018;46(4):525-542.
[11] ROSS CL, ZHOU Y, MCCALL CE, et al. The use of pulsed electromagnetic field to modulate inflammation and improve tissue regeneration: A review. Front Immunol. 2019;10:266.
[12] GAYNOR JS, HAGBERG S, GURFEIN BT. Veterinary applications of pulsed electromagnetic field therapy. Res Vet Sci. 2018;119:1-8.
[13] YANG X, HE H, YE W, et al. Effects of pulsed electromagnetic field therapy on pain, stiffness, physical function, and quality of life in patients with osteoarthritis: A systematic review and meta-analysis of randomized placebo-controlled trials. Phys Ther. 2020;100(7):1118-1131.
[14] BACHL N, RUOFF G, WESSNER B, et al. Electromagnetic interventions in musculoskeletal disorders. Clin Sports Med. 2008;27(1):87-105.
[15] 钱长炎.法拉第发现电磁感应现象及其思想转变过程[J].自然科学史研究,2019, 38(1):87-104.
[16] MARINCIC A, CIVRIĆ Z, MILOVANOVIĆ B. Nikola Tesla’s contributions to radio development. Serbian J Electrical Eng. 2006;3(2):131-148.
[17] BASSETT CAL, PAWLUK RJ, PILLA AA. Augmentation of bone repair by inductively coupled electromagnetic fields. Science. 1974;184(4136):575-577.
[18] SHARRARD WJW. A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J Bone Joint Surg Br. 1990;72(3):347-355.
[19] CADOSSI R, MASSARI L, RACINE-AVILA J, et al. Pulsed electromagnetic field stimulation of bone healing and joint preservation: Cellular mechanisms of skeletal response. J Am Acad Orthop Surg Glob Res Rev. 2020; 4(5):e1900155.
[20] AARON RK, CIOMBOR DMK. Therapeutic effects of electromagnetic fields in the stimulation of connective tissue repair. J Cell Biochem. 1993;52(1):42-46.
[21] SISKEN BF, WALKER J. Therapeutic aspects of electromagnetic fields for soft-tissue healing// BLANK M. Electromagnetic Fields. American Chemical Society, 1995: 277-281.
[22] MAIULLARI S, CICIRELLI A, PICERNO A, et al. Pulsed electromagnetic fields induce skeletal muscle cell repair by sustaining the expression of proteins involved in the response to cellular damage and oxidative stress. Int J Mol Sci. 2023;24(23):16631.
[23] JÄRVINEN TAH, JÄRVINEN TLN, KÄÄRIÄINEN M, et al. Muscle injuries: Biology and treatment. Am J Sports Med. 2005;33(5):745-764.
[24] GHOSHCHI SG, PETRONI ML, PIRAS A, et al. Pulsed electromagnetic field (PEMF) stimulation as an adjunct to exercise: A brief review. Front Sports Act Living. 2024: 6:1471087.
[25] YANG J, SUN L, FAN X, et al. Pulsed electromagnetic fields alleviate streptozotocin-induced diabetic muscle atrophy. Mol Med Rep. 2018;18(1): 1127-1133.
[26] MOBACH T, BROOKS J, BREINER A, et al. Impact of disuse muscular atrophy on the compound muscle action potential. Muscle Nerve. 2020;61(1):58-62.
[27] LEONARDO PS, CARDOSO KRDS, SILVA BO, et al. Evaluation of pulsed electromagnetic field therapy to improve muscle strength and functional aspects in the elderly: A pilot study. Manual Therapy Posturology Rehabil J. 2023;21:1293.
[28] FRONTERA WR, OCHALA J. Skeletal muscle: A brief review of structure and function. Calcif Tissue Int. 2015;96(3): 183-195.
[29] 赵倩,张学林.就离心收缩机制存在的问题探讨肌丝滑行理论的修正[J].生理学报,2021,73(1):143-147.
[30] 王志柱.骨骼、肌肉和结缔组织对身体活动产生的适应[J].体育世界(学术版), 2019(7):147-148.
[31] HORVATH SM. Review of energetics and blood flow in exercise. Diabetes. 1979; 28(Supplement_1):33-38.
[32] KJAER M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004; 84(2):649-698.
[33] SIRABELLA D, DE ANGELIS L, BERGHELLA L, et al. Sources for skeletal muscle repair: From satellite cells to reprogramming. J Cachexia Sarcopenia Muscle. 2013;4(2):125-136.
[34] PALLAFACCHINA G, BLAAUW B, SCHIAFFINO S, et al. Role of satellite cells in muscle growth and maintenance of muscle mass. Nutr Metab Cardiovasc Dis. 2013;23 Suppl 1: S12-518.
[35] HORNBERGER TA, SUKHIJA KB, CHIEN S, et al. Regulation of mTOR by mechanically induced signaling events in skeletal muscle. Cell Cycle. 2006;5(13):1391-1396.
[36] CLOSE GL, HAMILTON DL, PHILP A, et al. New strategies in sport nutrition to increase exercise performance. Free Radic Biol Med. 2016;98:144-158.
[37] SMITH C, KRUGER MJ, SMITH RM, et al. The inflammatory response to skeletal muscle injury: Illuminating complexities. Sports Med. 2008;38(11):947-969.
[38] FERRARO E, GIAMMARIOLI AM, CHIANDOTTO S, et al. Exercise-induced skeletal muscle remodeling and metabolic adaptation: Redox signaling and role of autophagy. Antioxid Redox Signal. 2014; 21(1):154-176.
[39] USHER-SMITH JA, HUANG CL, FRASER JA. Control of cell volume in skeletal muscle. Biol Rev. 2009;84(1):143-159.
[40] SCHIAFFINO S, DYAR K A, CICILIOT S, et al. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013; 280(17):4294-4314.
[41] SHIMADA Y, SAKURABA T, MATSUNAGA T, et al. Effects of therapeutic magnetic stimulation on acute muscle atrophy in rats after hindlimb suspension. Biomed Res. 2006;27(1):23-27.
[42] STRAUCH B, PATEL MK, ROSEN DJ, et al. Pulsed magnetic field therapy increases tensile strength in a rat Achilles’ tendon repair model. J Hand Surg. 2006;31A(7): 1131-1135.
[43] XU H, ZHANG J, LEI Y, et al. Low frequency pulsed electromagnetic field promotes C2C12 myoblasts proliferation via activation of MAPK/ERK pathway. Biochem Biophys Res Commun. 2016;479(1):97-102.
[44] CICEK F, TASTEKIN B, BALDAN I, et al. Effect of 40 Hz magnetic field application in posttraumatic muscular atrophy development on muscle mass and contractions in rats. Bioelectromagnetics. 2022;43(8):453-461.
[45] CHEING GLY, LI X, HUANG L, et al. Pulsed electromagnetic fields (PEMF) promote early wound healing and myofibroblast proliferation in diabetic rats. Bioelectromagnetics. 2014;35(6):426-437.
[46] LI X, ZHANG M, BAI L, et al. Effects of 50 Hz pulsed electromagnetic fields on the growth and cell cycle arrest of mesenchymal stem cells: An in vitro study. Electromagn Biol Med. 2012;31(4):356-364.
[47] HAN F, YIN S, WU H, et al. Effect on myoblast differentiation by extremely low-frequency pulsed electromagnetic fields. J Mech Med Biol. 2022;22(8):2240026.
[48] ZOU J, CHEN Y, QIAN J, et al. Effect of a low-frequency pulsed electromagnetic field on expression and secretion of IL-1β and TNF-α in nucleus pulposus cells. J Int Med Res. 2017;45(2):462-470.
[49] GIROLAMO L, STANCO D, GALLIERA E, et al. Low frequency pulsed electromagnetic field affects proliferation, tissue-specific gene expression, and cytokines release of human tendon cells. Cell Biochem Biophys. 2013;66(3):697-708.
[50] TROFÈ A, PIRAS A, MUEHSAM D, et al. Effect of pulsed electromagnetic fields (PEMFs) on muscular activation during cycling: A single-blind controlled pilot study. Healthcare. 2023;11(6):922.
[51] LEONARDO PS, CARDOSO KRDS, VIEIRA RDP, et al. Applications of pulsed electromagnetic field therapy in skeletal-muscle system: An integrative review. Man Ther Posturol Rehabil J. 2023;21:1-11.
[52] STEPHENSON MC, KRISHNA L, PANNIR SELVAN RM, et al. Magnetic field therapy enhances muscle mitochondrial bioenergetics and attenuates systemic ceramide levels following ACL reconstruction: Southeast Asian randomized-controlled pilot trial. J Orthop Translat. 2022;35:99-112.
[53] VENUGOBAL S, TAI YK, GOH J, et al. Short, weekly magnetic muscle therapy improves mobility and lean body mass in elderly: A Southeast Asian community case study. Aging. 2023;15(6):1768-1779.
[54] JEON HS, KANG SY, PARK JH, et al. Effects of pulsed electromagnetic field therapy on delayed-onset muscle soreness in biceps brachii. Phys Ther Sport. 2015; 16(1):34-39.
[55] 厉中山,白石,王春露,等.低频脉冲磁场诱导TRPC1技术对力量素质影响及训练应用展望[J].中国组织工程研究, 2023,27(11):1796-1804.
[56] BALCAVAGE WX, ALVAGER T, SWEZ J, et al. A mechanism for action of extremely low frequency electromagnetic fields on biological systems. Biochem Biophys Res Commun. 1996;222(2):374-378.
[57] CHEN L, HASSANI NIA F, STAUBER T. Ion channels and transporters in muscle cell differentiation. Int J Mol Sci. 2021; 22(24):13615.
[58] RUBAIY HN. A short guide to electrophysiology and ion channels. J Pharm Pharm Sci. 2017;20:48.
[59] FAULER M, JURKAT-ROTT K, LEHMANN-HORN F. Membrane excitability and excitation–contraction uncoupling in muscle fatigue. Neuromuscul Disord. 2012:22 Suppl 3:S162-S167.
[60] KUO IY, EHRLICH BE. Signaling in muscle contraction. Cold Spring Harb Perspect Biol. 2015;7(2):a006023.
[61] FLATSCHER J, PAVEZ LORIÈ E, MITTERMAYR R, et al. Pulsed electromagnetic fields (PEMF)—Physiological response and its potential in trauma treatment. Int J Mol Sci. 2023;24(14):11239.
[62] PANAGOPOULOS DJ, KARABARBOUNIS A, MARGARITIS LH. Mechanism for action of electromagnetic fields on cells. Biochem Biophys Res Commun. 2002;298(1):95-102.
[63] FUNK RHW. Coupling of pulsed electromagnetic fields (PEMF) therapy to molecular grounds of the cell. Am J Transl Res. 2018;10(5):1260-1272.
[64] BAHMANPOUR A, GHOREISHIAN SM, SEPAHVANDI A. Electromagnetic modulation of cell behavior: Unraveling the positive impacts in a comprehensive review. Ann Biomed Eng. 2024;52(8):1941-1954.
[65] BENAVIDES DAMM T, EGLI M. Calcium’s role in mechanotransduction during muscle development. Cell Physiol Biochem. 2014;33(2):249-272.
[66] BERCHTOLD MW, BRINKMEIER H, MÜNTENER M. Calcium ion in skeletal muscle: Its crucial role for muscle function, plasticity, and disease. Physiol Rev. 2000; 80(3):1215-1265.
[67] ZANOU N, SCHAKMAN O, LOUIS P, et al. Trpc1 ion channel modulates phosphatidylinositol 3-kinase/Akt pathway during myoblast differentiation and muscle regeneration. J Biol Chem. 2012; 287(18):14524-14534.
[68] CHIN ER. Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol (1985). 2005; 99(2):414-423.
[69] 厉中山,白石,刘洁,等.短期低频脉冲磁场诱导经典瞬时感受器电位通道1对局部肌肉肌力提升后的保持与衰减变化轨迹[J].中国组织工程研究,2023, 27(23):3721-3727.
[70] RAJALEKSHMI R, K AGRAWAL D. Energizing healing with electromagnetic field therapy in musculoskeletal disorders. J Orthop Sports Med. 2024; 6(2):89-106.
[71] LIPSCOMBE D, HELTON TD, XU W. L-Type calcium channels: The low down. J Neurophysiol. 2004;92(5):2633-2641.
[72] VARANI K, VINCENZI F, PASQUINI S, et al. Pulsed electromagnetic field stimulation in osteogenesis and chondrogenesis: Signaling pathways and therapeutic implications. Int J Mol Sci. 2021;22(3):1116.
[73] LI J KJ, LIN JCA, LIU HC, et al. Comparison of ultrasound and electromagnetic field effects on osteoblast growth. Ultrasound Med Biol. 2006;32(5):769-775.
[74] STAMLER JS, MEISSNER G. Physiology of nitric oxide in skeletal muscle. Physiol Rev. 2001;81(1):209-237.
[75] MURRANT CL, FLETCHER NM. Capillary communication: The role of capillaries in sensing the tissue environment, coordinating the microvascular, and controlling blood flow. Am J Physiol Heart Circ Physiol. 2022;323(5): H1019-H1036.
[76] ARROYO AG, IRUELA-ARISPE ML. Extracellular matrix, inflammation, and the angiogenic response. Cardiovasc Res. 2010;86(2):226-235.
[77] ARSIC N, ZACCHIGNA S, ZENTILIN L, et al. Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol Ther. 2004;10(5):844-854.
[78] PENG L, FU C, WANG L, et al. The effect of pulsed electromagnetic fields on angiogenesis. Bioelectromagnetics. 2021; 42(4):250-258.
[79] GOTO T, FUJIOKA M, ISHIDA M, et al. Noninvasive up-regulation of angiopoietin-2 and fibroblast growth factor-2 in bone marrow by pulsed electromagnetic field therapy. J Orthop Sci. 2010;15(5):661-665.
[80] TEPPER OM, CALLAGHAN MJ, CHANG EI, et al. Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2. FASEB J. 2004;18(11):1231-1233.
[81] SHADRACH JL, WAGERS AJ. Stem cells for skeletal muscle repair. Philos Trans R Soc Lond B Biol Sci. 2011;366(2297): 2297-2306.
[82] TIDBALL JG. Mechanisms of muscle injury, repair, and regeneration. Compr Physiol. 2011;1(4):2029-2062.
[83] KARALAKI M, FILI S, PHILIPPOU A, et al. Muscle regeneration: Cellular and molecular events. In Vivo. 2009;23(5):779-796.
[84] ZAMMIT PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin, and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol. 2017;72:19-32.
[85] PEDERSEN BK, ÅKERSTRÖM TCA, NIELSEN AR, et al. Role of myokines in exercise and metabolism. J Appl Physiol. 2007;103(3):1093-1098.
[86] TEN BROEK RW, GREFTE S, VON DEN HOFF JW. Regulatory factors and cell populations involved in skeletal muscle regeneration. J Cell Physiol. 2010;224(1):7-16.
[87] FASSINA L, SAINO E, VISAI L, et al. Electromagnetic enhancement of a culture of human SAOS-2 osteoblasts seeded onto titanium fiber-mesh scaffolds. J Biomed Mater Res A. 2008;87(3):750-759.
[88] VINHAS A, RODRIGUES MT, GONÇALVES AI, et al. Pulsed electromagnetic field modulates tendon cells response in IL-1β-conditioned environment. J Orthop Res. 2020;38(1):160-172.
[89] LIU M, LEE C, LARON D, et al. Role of pulsed electromagnetic fields (PEMF) on tenocytes and myoblasts-potential application for treating rotator cuff tears: PEMF myoblast tenocyte. J Orthop Res. 2017;35(5): 956-964. |