中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (32): 6866-6876.doi: 10.12307/2025.783

• 肌肉肌腱韧带组织构建 tissue construction of the muscle, tendon and ligament • 上一篇    下一篇

高温高湿与低氧环境对运动者能量代谢和骨骼肌氧合的差异

耿治中1,王金昊2,曹国欢2,谈晨皓2,李隆基1,邱  俊2   

  1. 1上海体育大学,上海市  200438;2上海体育科学研究所,上海市  200030


  • 收稿日期:2024-09-10 接受日期:2024-10-31 出版日期:2025-11-18 发布日期:2025-04-25
  • 通讯作者: 邱俊,博士,研究员,上海体育科学研究所,上海市 200030
  • 作者简介:耿治中,男,1994年生,山东省肥城市人,汉族,上海体育大学在读博士,主要从事特殊环境与竞技体育的相关研究。
  • 基金资助:
    上海市科委课题项目(22dz1204601),项目负责人:邱俊

Difference of energy metabolism and skeletal muscle oxygenation in athletes under high temperature, high humidity and low oxygen environment

Geng Zhizhong1, Wang Jinhao2, Cao Guohuan2, Tan Chenhao2, Li Longji1, Qiu Jun2   

  1. 1Shanghai Sports of University, Shanghai 200438, China; 2Shanghai Research Institute of Sports Science, Shanghai 200030, China
  • Received:2024-09-10 Accepted:2024-10-31 Online:2025-11-18 Published:2025-04-25
  • Contact: Qiu Jun, PhD, Researcher, Shanghai Research Institute of Sports Science, Shanghai 200030, China
  • About author:Geng Zhizhong, Doctoral candidate, Shanghai Sports of University, Shanghai 200438, China
  • Supported by:
    Shanghai Science and Technology Commission Project, No. 22dz1204601 (to QJ)

摘要:


文题释义:
骨骼肌氧合:指骨骼肌组织中氧气的供应和利用情况,通过测量肌肉中氧气的摄取、传输和消耗来评估。肌氧合是影响运动表现、疲劳恢复和健康状态的重要指标。在运动过程中,肌肉的氧合水平能够反映机体对运动强度的适应能力,以及肌肉能量代谢的效率。
能量代谢:在运动过程中,能量代谢指的是机体在不同强度下通过脂肪氧化、碳水化合物氧化等途径来产生能量的过程。对于竞技体育而言,能量代谢的特征主要包括脂肪和碳水化合物的氧化率,这直接影响运动中的耐力、速度和表现。

背景:运动者在高温高湿环境或低氧环境下运动时将加剧骨骼肌脱氧反应,同时伴随着机体脂肪氧化供能的降低,这将导致运动能力的降低。
目的:评估高温高湿与低氧环境对运动者在递增负荷运动中脂肪氧化率的影响,同时分析骨骼肌脱氧血红蛋白动力学参数的差异,明确不同环境因素下脂肪氧化能力与骨骼肌氧合状态之间的关系。
方法:共招募12名现代五项男性运动者,分别在常规环境(23 ℃、RH45%、FiO2=21.0%)、高温高湿环境(35 ℃、RH70%、FiO2=21.0%)以及低氧环境(23 ℃、RH45%、FiO2=15.6%)中进行静息代谢与递增负荷运动测试。分别采集静息代谢与递增负荷运动测试过程中与测试结束后气体代谢数据,以计算脂肪氧化率、碳水化合物氧化率、能量消耗以及运动后过量氧耗。同步测定股外侧肌脱氧血红蛋白含量。采用双线性函数模型拟合脱氧血红蛋白变化的特征参数:线性拟合斜率(ΔEHHb)、拐点前线性拟合斜率(ΔEHHb-1)、拐点后线性拟合斜率(ΔEHHb-2)。采用SIN函数模型拟合运动过程中脂肪氧化曲线,确定最大脂肪氧化率(MFO)、最大脂肪氧化强度(FATmax)与脂肪氧化动力学参数:曲线的扩张性、对称性、平移性。
结果与结论:①能量代谢:不同环境下各组最大脂肪氧化率无显著性差异(P > 0.05)。与常规环境组相比,高温高湿环境组与低氧环境组的最大脂肪氧化率所对应的运动时间和最大脂肪氧化强度均显著性降低(P < 0.05)。与常规环境组相比,低氧环境组最大脂肪氧化率对应峰值摄氧量百分比降低(P < 0.05)。低氧环境组的脂肪氧化率在运动测试过程中均处于较低水平,高温高湿环境组仅在较高运动负荷时脂肪氧化率出现降低。与常规环境组相比,低氧环境组与高温高湿环境组的曲线扩张性显著性减小(P < 0.05)。②脱氧血红蛋白动力学:与常规环境组相比,高温高湿环境组的线性拟合斜率显著性升高,高温高湿环境组与低氧环境组的拐点前线性拟合斜率显著性升高(P < 0.05)。③相关性分析:线性拟合斜率与曲线的对称性存在显著负相关关系,拐点前线性拟合斜率与最大脂肪氧化强度和最大脂肪氧化率存在显著负相关关系,拐点后线性拟合斜率与最大脂肪氧化率存在显著正相关关系,拐点所对应的摄氧量(V̇O2@BP)与曲线的扩张性、曲线的对称性、最大脂肪氧化强度均存在正相关关系。④结果表明,高温高湿与低氧环境下递增负荷运动均能够引起骨骼肌脱氧反应加速,从而抑制机体脂肪氧化能力。与高温高湿环境相比,在低氧环境中运动可能更快地导致运动者骨骼肌氧气运输与利用的失衡,进而机体依赖更多的无氧糖酵解供能引起更低的脂肪氧化能力。
https://orcid.org/0000-0001-8000-4236(耿治中)

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

关键词: 高温高湿环境, 低氧环境, 能量代谢, 最大脂肪氧化率, 递增负荷运动, 脱氧血红蛋白动力学, 竞技体育运动者

Abstract: BACKGROUND: Competitive athletes exercising in high-temperature, high-humidity, or low-oxygen environments experience intensified skeletal muscle deoxygenation and reduced fat oxidation, which can impair athletic performance.
OBJECTIVE: To evaluate the impact of high-temperature, high-humidity, and low-oxygen environments on the fat oxidation rates of athletes during incremental load exercise, and to analyze the differences in deoxyhemoglobin kinetic parameters in skeletal muscle, thereby clarifying the relationship between fat oxidation capacity and skeletal muscle oxygenation under varying environmental conditions.
METHODS: Twelve male modern pentathlon athletes were recruited for tests under three environmental conditions: normal (23 °C, RH45%, FiO2=21.0%), high temperature and high humidity (35 °C, RH70%, FiO2=21.0%), and low oxygen (23 °C, RH45%, FiO2=15.6%). Resting metabolism and incremental load exercise were tested. Gas exchange data during and post-exercise were collected to calculate fat oxidation rate, carbohydrate oxidation rate, energy expenditure, and excess post-exercise oxygen consumption. Simultaneous measurements of SmO2 and total hemoglobin in the vastus lateralis muscle were used to calculate deoxyhemoglobin (HHb) levels. Deoxyhemoglobin change parameters-linear fitting slope (ΔEHHb), slope before the inflection point (ΔEHHB-1), and slope after the inflection point (ΔEHHB-2)-were determined using a bilinear function model. Fat oxidation curves were fitted using a SIN function model to identify the intensity (FATmax) that induced maximal fat oxidation (MFO), along with the curve’s expansion, symmetry, and translation.
RESULTS AND CONCLUSION: (1) Energy metabolism: No significant differences in maximal fat oxidation were observed across environments in each group 
(P > 0.05). Compared with the normal environment group, both high temperature and high humidity group and low oxygen group showed significantly decreased time to maximal fat oxidation and FATmax (P < 0.05). The percentage of maximal fat oxidation corresponding to peak oxygen uptake was lower in the low oxygen environment group (P < 0.05). Fat oxidation was consistently low in the low oxygen environment group during exercise, while in the high temperature and high humidity environment group, it decreased only at higher exercise loads. Additionally, the expansion parameter was significantly reduced in both high temperature and high humidity and low oxygen environment groups (P < 0.05). (2) Deoxyhemoglobin dynamics: The ΔEHHb was significantly higher in the high temperature and high humidity environment group, and ΔEHHB-1 was significantly increased in both high temperature and high humidity and low oxygen environment groups (P < 0.05). (3) Correlation analysis: ΔEHHb was significantly negatively correlated with symmetry; ΔEHHB-1 was negatively correlated with FATmax and maximal fat oxidation; ΔEHHB-2 was positively correlated with maximal fat oxidation, and V̇O2@BP was positively correlated with symmetry, expansion, and FATmax. (4) These findings indicate that incremental load exercise in high temperature, high humidity, and low oxygen environments accelerates skeletal muscle deoxygenation, thereby inhibiting fat oxidation capacity. Compared with high temperature and high humidity, low oxygen environments may more rapidly disrupt the balance between oxygen delivery and utilization in athletes’ skeletal muscle, leading to a greater reliance on anaerobic glycolysis and a consequent reduction in fat oxidation capacity during exercise.

Key words: high temperature and humidity environment, low oxygen environment, energy metabolism, maximum fat oxidation rate, increasing load movement, deoxyhemoglobin dynamics, competitive sports player

中图分类号: