[1] WANG X, ChEN D, ZOU P, et al. Understanding adaptive tasks in cardiac rehabilitation among patients with acute myocardial infarction: a qualitative study. Ann Med. 2024;56(1):2311227.
[2] WANG X, XU L, LEE G, et al. Development of an integrated cardiac rehabilitation program to improve the adaptation level of patients after acute myocardial infarction. Front Public Health. 2023;11:1121563.
[3] WANG L, LIU J, FANG H, et al. Factors associated with participation in cardiac rehabilitation in patients with acute myocardial infarction: a systematic review and meta-analysis. Clin Cardiol. 2023; 46(11):1450-1457.
[4] 《中国心血管健康与疾病报告》2021(冠心病部分内容)[J].心肺血管病杂志,2022, 41(12):1205-1211.
[5] HEUSCH G, ANDREADOU I, BELL R, et al. Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol. 2023;67:102894.
[6] AKHTAR KH, KHAN MS, BARON SJ, et al. The spectrum of post-myocardial infarction care: From acute ischemia to heart failure. Prog Cardiovasc Dis. 2024;82:15-25.
[7] HAUSENLOY DJ, CHILIAN W, CREA F, et al. The coronary circulation in acute myocardial ischaemia/reperfusion injury: a target for cardioprotection. Cardiovasc Res. 2019;115(7):1143-1155.
[8] YOU H, DONG M. Identification of immuno-inflammation-related biomarkers for acute myocardial infarction based on bioinformatics. J Inflamm Res. 2023;16: 3283-3302.
[9] CAI S, ZHAO M, ZHOU B, et al. Mitochondrial dysfunction in macrophages promotes inflammation and suppresses repair after myocardial infarction. J Clin Invest. 2023; 133(4):e159498.
[10] MALET-PEREZL J, BELAIDI E. Interplay between hypoxia inducible factor-1 and mitochondria in cardiac diseases. Free Radic Biol Med. 2024;221:13-22.
[11] GUPTA L, THOMAS J, RAVICHANDRAN R, et al. Inflammation in cardiovascular disease: a comprehensive review of biomarkers and therapeutic targets. Cureus. 2023;15(9):e45483.
[12] CHEN L, YANG X, WANG K, et al. Humanin inhibits lymphatic endothelial cells dysfunction to alleviate myocardial infarction-reperfusion injury via BNIP3-mediated mitophagy. Free Radic Res. 2024; 58(3):180-193.
[13] KUZNETSOV AV, JAVADOV S, MARGREITER R, et al. The role of mitochondria in the mechanisms of cardiac ischemia-reperfusion injury. Antioxidants (Basel). 2019;8(10):454.
[14] LI H, JIA Y, YAO D, et al. Rhein alleviates myocardial ischemic injury by inhibiting mitochondrial division, activating mitochondrial autophagy and suppressing myocardial cell apoptosis through the Drp1/Pink1/Parkin pathway. Mol Biol Rep. 2024;51(1):266.
[15] ZHANG M, YANG Y, ZHU Z, et al. Implications of activating the ANT2/mTOR/PGC-1α feedback loop: insights into mitochondria-mediated injury in hypoxic myocardial cells. Curr Issues Mol Biol. 2023;45(11): 8633-8651.
[16] NAOI M, WU Y, SHAMOTO-NAGAI M, et al. Mitochondria in neuroprotection by phytochemicals: bioactive polyphenols modulate mitochondrial apoptosis system, function and structure. Int J Mol Sci. 2019; 20(10):2451.
[17] CHANG X, LIU R, LI R, et al. Molecular mechanisms of mitochondrial quality control in ischemic cardiomyopathy. Int J Biol Sci. 2023;19(2):426-448.
[18] BEREZHNOV AV, FEDOTOVA EI, NENOV MN, et al. Disturbance of calcium homeostasis, activation of Ca2+-dependent phospholipases, and mitochondrial energetics collapse. Int J Mol Sci. 2020; 21(20):7461.
[19] BERTERO E, POPOIU TA, MAACK C. Mitochondrial calcium in cardiac ischemia/reperfusion injury and cardioprotection. Basic Res Cardiol. 2024;119(4):569-585.
[20] BALACHANDER K, VIJAYASHREE PRIYADHARSINI J, PARAMASIVAM A. Role of exosomal mitochondria in cardiovascular diseases. Hypertens Res. 2023;46(3): 812-813.
[21] YU Y, YAN Y, NIU F, et al. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 2021;7(1):193.
[22] HEUSCH G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020;17(12): 773-789.
[23] JIANG S, ZHANG S. Differentiation of cardiomyocytes from amniotic fluid‑derived mesenchymal stem cells by combined induction with transforming growth factor β1 and 5‑azacytidine. Mol Med Rep. 2017; 16(5):5887-5893.
[24] FU JH, ZHAO M, LIN YR, et al. Degradable chitosan-collagen composites seeded with cells as tissue engineered heart valves. Heart Lung Circ. 2017;26(1):94-100.
[25] RAZAVI ZS, SOLTANI M, MAHMOUDVAND G, et al. Advancements in tissue engineering for cardiovascular health: a biomedical engineering perspective. Front Bioeng Biotechnol. 2024;12:1385124.
[26] JARRELL DK, VANDERSLICE EJ, VEDEPO MC, et al. Engineering myocardium for heart regeneration-advancements, considerations, and future directions. Front Cardiovasc Med. 2020;7:586261.
[27] WHO CVD RISK CHART WPRKING GROUP. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health. 2019;7(10):e1332-e1345.
[28] CHEN G, WESTRA J, YANG X, et al. A simple angio-based coronary flow assessment of culprit vessels in primary percutaneous coronary intervention is associated with long-term prognosis after ST-segment-elevation myocardial infarction. Int J Cardiol. 2024;409:132199.
[29] ZHOU YM, SUN B. Immediate versus staged complete revascularization in patients presenting with acute coronary syndrome and multivessel coronary disease without cardiac shock: a study-level meta-analysis of randomized controlled trials. Cardiovasc Drugs Ther. 2024. doi:10.1007/s10557-024-07597-7.
[30] VALIKESERLIS I, ATHANASIOU AA, STAKOS D. Cellular mechanisms and pathways in myocardial reperfusion injury. Coron Artery Dis. 2021;32(6):567-577.
[31] FENG M, ZHANG L, YIN A, et al. Peptide PDRPS6 attenuates myocardial ischemia injury by improving mitochondrial function. Eur J Pharmacol. 2024;974:176570.
[32] ZHANG T, ZHONG Y, SHI Y, et al. Multi-omics reveals that 5-O-methylvisammioside prevention acute liver injury in mice by regulating the TNF/MAPK/NF-κB/arachidonic acid pathway. Phytomedicine. 2024;128:155550.
[33] LING T, YIN A, CAO Y, et al. Purinergic astrocyte signaling driven by tnf-α after cannabidiol administration restores normal synaptic remodeling following traumatic brain injury. Neuroscience. 2024;545:31-46.
[34] AKKAYA FIRAT A, ÖZEL A, DAVUTOGLU EA, et al. Maternal serum interleukin-1β, FoxO1 and Sestrin2 levels in predicting preterm delivery. J Matern Fetal Neonatal Med. 2024;37(1):2295807.
[35] ABDULLA MH, ALMARABEH S, BOLGER T, et al. Effects of intrarenal pelvic infusion of tumour necrosis factor-α and interleukin 1-β on reno-renal reflexes in anaesthetised rats. J Hypertens. 2024;42(6):1027-1038.
[36] WANG H, ZHANG Y, ZHAO C, et al. Serum IL-17A and IL-6 in paediatric mycoplasma pneumoniae pneumonia: implications for different endotypes. Emerg Microbes Infect. 2024;13(1):2324078.
[37] XU H, DU Z, LI Z, et al. MUC1-EGFR crosstalk with IL-6 by activating NF-κB and MAPK pathways to regulate the stemness and paclitaxel-resistance of lung adenocarcinoma. Ann Med. 2024;56(1): 2313671.
[38] SCHWAB AD, WYATT TA, NELSON AJ, et al. Lung-delivered IL-10 therapy elicits beneficial effects via immune modulation in organic dust exposure-induced lung inflammation. J Immunotoxicol. 2024; 21(1):2332172.
[39] YANG C, ZHANG Y, WANG R, et al. IL-10+CD19+ regulatory B cells induce CD4+Foxp3+regulatory T cells in serum of cervical cancer patients. Autoimmunity. 2024;57(1):2290909.
[40] XIA YM, GUAN YQ, LIANG JF, et al. TAK-242 improves sepsis-associated acute kidney injury in rats by inhibiting the TLR4/NF-κB signaling pathway. Ren Fail. 2024; 46(1):2313176.
[41] MA L, WANG T, LIU M, et al. Xiaoer niuhuang qingxin powder alleviates influenza a virus infection by inhibiting the activation of the TLR4/MyD88/NF-κB signaling pathway. J Ethnopharmacol. 2024;328:118000.
[42] LIN L, WANG L, LI A, et al. CircDiaph3 aggravates H/R-induced cardiomyocyte apoptosis and inflammation through miR-338-3p/SRSF1 axis. J Bioenerg Biomembr. 2024;56(3):235-245.
[43] SAEED A, FAROUK MM, SABRI NA, et al. Effect of pentoxifylline on endothelial dysfunction, oxidative stress and inflammatory markers in STEMI patients. Future Sci OA. 2024;10(1):FSO967.
[44] MORADI A, ASLANI MR, MIRSHEKARI JAHANGIRI H, et al. Protective effects of 4-methylumbelliferone on myocardial ischemia/reperfusion injury in rats through inhibition of oxidative stress and downregulation of TLR4/NF-κB/NLRP3 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(7):5015-5027.
[45] CAO Y, LUO F, PENG J, et al. KMT2B-dependent RFK transcription activates the TNF-α/NOX2 pathway and enhances ferroptosis caused by myocardial ischemia-reperfusion. J Mol Cell Cardiol. 2022;173:75-91.
[46] KROTT KJ, REUSSWIG F, DILLE M, et al. Platelets induce cell apoptosis of cardiac cells via fasl after acute myocardial infarction. Biomedicines. 2024;12(5):1077.
[47] KIM Y, NURAKHAYEV S, NURKESH A, et al. Macrophage polarization in cardiac tissue repair following myocardial infarction. Int J Mol Sci. 2021;22(5):2715.
[48] GRANEY PL, BlEN-SHAU S, LANDAU S, et al. Macrophages of diverse phenotypes drive vascularization of engineered tissues. Sci Adv. 2020;6(18):eaay6391.
[49] CHAI R, YE Z, XUE W, et al. Tanshinone IIA inhibits cardiomyocyte pyroptosis through TLR4/NF-κB p65 pathway after acute myocardial infarction. Front Cell Dev Biol. 2023;11:1252942.
[50] YUAN H, YANG G, LI S, et al. Calcium sensing receptor involving in therapy of embryonic stem cell transplantation alleviates acute myocardial infarction by inhibiting apoptosis and oxidative stress in rats. Iran J Basic Med Sci. 2020;23(10):1353-1359.
[51] IWATA A, MORGAN-STEVENSON V, SCHWARTZ B, et al. Extracellular BCL2 proteins are danger-associated molecular patterns that reduce tissue damage in murine models of ischemia-reperfusion injury. PLoS One. 2010;5(2):e9103.
[52] GUO M, ZHUANG Y, WU Y, et al. The cell fate regulator DACH1 modulates ferroptosis through affecting P53/SLC25A37 signaling in fibrotic disease. Hepatol Commun. 2024; 8(3):e0396.
[53] ZHANG R, DI C, GAO H, et al. Identification of iron metabolism-related genes in the circulation and myocardium of patients with sepsis via applied bioinformatics analysis. Front Cardiovasc Med. 2023;10:1018422.
[54] LU C, LUO J, LIU Y, et al. The oxidative stress responses caused by phthalate acid esters increases mRNA abundance of base excision repair (BER) genes in vivo and in vitro. Ecotoxicol Environ Saf. 2021;208:111525.
[55] WU Y, JIANG T, HUA J, et al. Integrated bioinformatics-based analysis of hub genes and the mechanism of immune infiltration associated with acute myocardial infarction. Front Cardiovasc Med. 2022;9:831605.
[56] QI Z, PU Y, GUO H, et al. Identification and subtype analysis of biomarkers associated with the solute carrier family in acute myocardial infarction. Medicine (Baltimore). 2023;102(49):e36515.
[57] YANG X, LI J, HU X, et al. Identification of PFKFB2 as a key gene for the transition from acute to old myocardial infarction in peripheral blood. Front Cardiovasc Med. 2022;9:993579.
[58] 韦丽娥,卢梦歌,杨秋月,等.生物信息学分析揭示与急性心肌梗死有关的线粒体功能障碍基因[J].齐齐哈尔医学院学报,2023,44(21):2007-2016.
[59] 壮婷,杨帆.急性心肌梗死患者外周血NO-PGC1α线粒体生物合成通路相关基因的表达及其临床意义[J].中国现代医学杂志,2022,32(12):78-83.
[60] LI SP, LIU B, SONG B, et al. miR-28 promotes cardiac ischemia by targeting mitochondrial aldehyde dehydrogenase 2 (ALDH2) in mus musculus cardiac myocytes. Eur Rev Med Pharmacol Sci. 2015;19(5):752-758. |