中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (34): 7376-7384.doi: 10.12307/2025.477
• 生物材料综述 biomaterial review • 上一篇 下一篇
苏永昆1,孙 红2,刘 淼2,杨 华2,李青松1,3
收稿日期:
2024-07-06
接受日期:
2024-08-17
出版日期:
2025-12-08
发布日期:
2025-01-17
通讯作者:
杨华,主任医师,贵州医科大学附属医院骨科,贵州省贵阳市 550004
李青松,硕士生导师,主任医师,贵州医科大学临床医学院,贵州省贵阳市 550004;贵阳市第四人民医院骨三科,贵州省贵阳市 550002
作者简介:
苏永昆,男,1999年生,贵州省贵阳市人,汉族,贵州医科大学在读硕士,主要从事脊柱疾病的基础与临床研究。
基金资助:
Su Yongkun1, Sun Hong2, Liu Miao2, Yang Hua2, Li Qingsong1, 3
Received:
2024-07-06
Accepted:
2024-08-17
Online:
2025-12-08
Published:
2025-01-17
Contact:
Yang Hua, Chief physician, Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
Li Qingsong, Master’s supervisor, Chief physician, Clinical Medical College of Guizhou Medical University, Guiyang 550004, Guizhou Province, China; Third Department of Orthopedics, Fourth People’s Hospital of Guiyang City, Guiyang 550002, Guizhou Province, China
About author:
Su Yongkun, Master candidate, Clinical Medical College of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
Supported by:
摘要:
文题释义:
抗氧化剂:是能够抑制或中和活性氧、减少氧化应激,从而保护细胞和组织免受氧化损伤的一类物质的总称。
背景:抗氧化剂能够减轻氧化应激引起的细胞损伤和基质降解,具有保护椎间盘结构和功能的作用,从而延缓椎间盘退变的发生与发展。
目的:综述抗氧化剂在椎间盘退变治疗中的研究现状。结果与结论:①抗氧化剂在椎间盘退变的治疗中具有多重作用,包括减轻氧化应激、抑制炎症反应、促进细胞自噬、抑制细胞凋亡及保护细胞外基质。通过多途径的综合作用,抗氧化剂有望成为椎间盘退变治疗中的重要手段。②纳米水凝胶系统能将抗氧化剂快速稳定地靶向输送至椎间盘内部,提高抗氧化剂的生物利用度。因此,开发纳米水凝胶系统搭载的新型抗氧化剂以及抗氧化剂的联合治疗策略将会是未来研究的重点方向。
https://orcid.org/0009-0003-0020-234X (苏永昆)
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程
中图分类号:
苏永昆, 孙 红, 刘 淼, 杨 华, 李青松. 开发纳米水凝胶系统搭载新型抗氧化剂与抗氧化剂联合治疗椎间盘退变[J]. 中国组织工程研究, 2025, 29(34): 7376-7384.
Su Yongkun, Sun Hong, Liu Miao, Yang Hua, Li Qingsong. Development of novel antioxidants and antioxidant combination carried by nano-hydrogel systems in treatment of intervertebral disc degeneration[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7376-7384.
[1] WANG Y, CHENG H, WANG T, et al. Oxidative stress in intervertebral disc degeneration: molecular mechanisms, pathogenesis and treatment. Cell Prolif. 2023;56(9):e13448. [2] CHE H, LI J, LI Y, et al. P16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle. Elife. 2020;9:e52570. [3] 王啸华,何敢声,谢林.氧化应激在椎间盘退变中的作用进展[J].中医正骨, 2023,35(5):44-48. [4] CAO G, YANG S, CAO J, et al. The role of oxidative stress in intervertebral disc degeneration. Oxid Med Cell Longev. 2022;2022:2166817. [5] GAETANI GD, PARKER JC, KIRKMAN HN. Intracellular restraint: a new basis for the limitation in response to oxidative stress in human erythrocytes containing low-activity variants of glucose-6-phosphate dehydrogenase. Proc Natl Acad Sci U S A. 1974;71(9):3584-3587. [6] SIES H. Oxidative stress: from basic research to clinical application. Am J Med. 1991;91(3C):31S-38S. [7] HOU G, LU H, CHEN M, et al. Oxidative stress participates in age-related changes in rat lumbar intervertebral discs. Arch Gerontol Geriatr. 2014;59(3):665-669. [8] KRITSCHIL R, SCOTT M, SOWA G, et al. Role of autophagy in intervertebral disc degeneration. J Cell Physiol. 2022;237(2):1266-1284. [9] FAN C, CHU G, YU Z, et al. The role of ferroptosis in intervertebral disc degeneration. Front Cell Dev Biol. 2023;11:1219840. [10] SEOL D, COLEMAN MC, MARTIN JA, et al. Targeting oxidative stress with amobarbital to prevent intervertebral disc degeneration: Part I. in vitro and ex vivo studies. Spine J. 2021;21(6):1021-1030. [11] ANGELOVA PR. Sources and triggers of oxidative damage in neurodegeneration. Free Radic Biol Med. 2021;173:52-63. [12] CHENG F, YANG H, CHENG Y, et al. The role of oxidative stress in intervertebral disc cellular senescence. Front Endocrinol (Lausanne). 2022;13:1038171. [13] PARK JS, PARK JB, PARK IJ, et al. Accelerated premature stress-induced senescence of young annulus fibrosus cells of rats by high glucose-induced oxidative stress. Int Ortho. 2014;38(6):1311-1320. [14] CHEN C, ZHOU Y, HU C, et al. Mitochondria and oxidative stress in ovarian endometriosis. Free Radic Biol Med. 2019;136:22-34. [15] 李季霖,周红海,余进爵,等.髓核细胞凋亡相关信号通路研究进展[J].中国脊柱脊髓杂志,2021,31(2):178-182. [16] LI Y, CHEN L, GAO Y, et al. Oxidative stress and intervertebral disc degeneration: pathophysiology, signaling pathway, and therapy. Oxid Med Cell Longev. 2022; 2022:1984742. [17] FENG C, YANG M, LAN M, et al. ROS: Crucial intermediators in the pathogenesis of intervertebral disc degeneration. Oxid Med Cell Longev. 2017;2017:5601593. [18] 钱嘉铭,祝永刚,肖辉灯,等.髓核细胞退变相关信号通路的研究进展[J]. 中国脊柱脊髓杂志,2021,31(6):561-566. [19] ZHANG X, ZHANG Z, ZOU X, et al. Unraveling the mechanisms of intervertebral disc degeneration: an exploration of the p38 MAPK signaling pathway. Front Cell Dev Biol. 2023;11:1324561. [20] YU H, HOU G, CAO J, et al. Mangiferin alleviates mitochondrial ros in nucleus pulposus cells and protects against intervertebral disc degeneration via suppression of nf-kappab signaling pathway. Oxid Med Cell Longev. 2021; 2021:6632786. [21] ZHANG Q, LI J, LI Y, et al. Bmi deficiency causes oxidative stress and intervertebral disc degeneration which can be alleviated by antioxidant treatment. J Cell Mol Med. 2020;24(16):8950-8961. [22] SUN Y, LYU M, LU Q, et al. Current perspectives on nucleus pulposus fibrosis in disc degeneration and repair. Int J Mol Sci. 2022;23(12):6612. [23] 轩莹莹,杨玉田,孙月红,等.白藜芦醇对后肢去负荷雄性大鼠生殖损伤的对抗作用[J].空间科学学报,2024,44(1):133-141. [24] JIANG Y, XIE Z, YU J, et al. Resveratrol inhibits IL-1beta-mediated nucleus pulposus cell apoptosis through regulating the PI3K/Akt pathway. Biosci Rep. 2019;39(3):BSR20190043. [25] GAO J, ZHANG Q, SONG L. Resveratrol enhances matrix biosynthesis of nucleus pulposus cells through activating autophagy via the PI3K/Akt pathway under oxidative damage. Biosci Rep. 2018;38(4):BSR20180544. [26] WU C, GE J, YANG M, et al. Resveratrol protects human nucleus pulposus cells from degeneration by blocking IL-6/JAK/STAT3 pathway. Eur J Med Res. 2021;26(1):81. [27] SHAN Q, LI N, ZHANG F, et al. Resveratrol suppresses annulus fibrosus cell apoptosis through regulating oxidative stress reaction in an inflammatory environment. Biomed Res Int. 2021;2021:9100444. [28] JIANG Y, DONG G, SONG Y. Nucleus pulposus cell senescence is alleviated by resveratrol through regulating the ROS/NF-kappaB pathway under high-magnitude compression. Biosci Rep. 2018;38(4):BSR20180670. [29] LI K, LI Y, MI J, et al. Resveratrol protects against sodium nitroprusside induced nucleus pulposus cell apoptosis by scavenging ROS. Int J Mol Med. 2018;41(5):2485-2492. [30] FAN F, LEI M. Mechanisms underlying curcumin-induced neuroprotection in cerebral ischemia. Front Pharmacol. 2022;13:893118. [31] YANG L, CHEN Y, LIU Y, et al. The role of oxidative stress and natural antioxidants in ovarian aging. Front Pharmacol. 2020;11:617843. [32] KANG L, XIANG Q, ZHAN S, et al. Restoration of autophagic flux rescues oxidative damage and mitochondrial dysfunction to protect against intervertebral disc degeneration. Oxid Med Cell Longev. 2019;2019:7810320. [33] ABRAHAMS S, HAYLETT WL, JOHNSON G, et al. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: a review. Neuroscience. 2019;406:1-21. [34] XIAO L, DING B, GAO J, et al. Curcumin prevents tension-induced endplate cartilage degeneration by enhancing autophagy. Life Sci. 2020;258:118213. [35] LIN X, BAI D, WEI Z, et al. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One. 2019;14(5):e0216711. [36] DENG Y, TAN XT, WU Q, et al. Correlations between col2a and aggrecan genetic polymorphisms and the risk and clinicopathological features of intervertebral disc degeneration in a chinese han population: a case-control study. Genet Test Mol Biomarkers. 2017;21(2):108-115. [37] ZWOLAK I. Epigallocatechin gallate for management of heavy metal-induced oxidative stress: mechanisms of action, efficacy, and concerns. Int J Mol Sci. 2021;22(8):4027. [38] KRUPKOVA O, HANDA J, HLAVNA M, et al. The natural polyphenol epigallocatechin gallate protects intervertebral disc cells from oxidative stress. Oxid Med Cell Longev. 2016;2016:7031397. [39] MEI L, ZHENG Y, MA T, et al. (-)-Epigallocatechin-3-gallate ameliorates intervertebral disc degeneration through reprogramming of the circadian clock. Front Pharmacol. 2021;12:753548. [40] TIAN Y, BAO Z, JI Y, et al. Epigallocatechin-3-gallate protects h(2)o(2)-induced nucleus pulposus cell apoptosis and inflammation by inhibiting cgas/sting/nlrp3 activation. Drug Des Devel Ther. 2020;14:2113-2122. [41] 吴铭杰,康然.微环境影响椎间盘组织工程修复的研究进展[J].江苏医药, 2023,49(3):316-320. [42] ZHAO DW, CHENG Q, GENG H, et al. Decoding macrophage subtypes to engineer modulating hydrogels for the alleviation of intervertebral disk degeneration. Adv Sci (Weinh). 2024;11(1):e2304480. [43] LIU L, WANG W, HUANG L, et al. Injectable pathological microenvironment-responsive anti-inflammatory hydrogels for ameliorating intervertebral disc degeneration. Biomaterials. 2024;306:122509. [44] SALEHI B, FOKOU PVT, SHARIFI-RAD M, et al. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals (Basel). 2019;12(1):11. [45] NAN LP, WANG F, RAN D, et al. Naringin alleviates H2O2-induced apoptosis via the PI3K/Akt pathway in rat nucleus pulposus-derived mesenchymal stem cells. Connect Tissue Res. 2020;61(6):554-567. [46] CHEN R, GAO S, GUAN H, et al. Naringin protects human nucleus pulposus cells against TNF-alpha-induced inflammation, oxidative stress, and loss of cellular homeostasis by enhancing autophagic flux via AMPK/SIRT1 activation. Oxid Med Cell Longev. 2022;2022:7655142. [47] ZHANG Z, WANG C, LIN J, et al. Therapeutic potential of naringin for intervertebral disc degeneration: involvement of autophagy against oxidative stress-induced apoptosis in nucleus pulposus cells. Am J Chin Med. 2018:1-20. [48] ZHANG YH, SHANGGUAN WJ, ZHAO ZJ, et al. Naringin inhibits apoptosis induced by cyclic stretch in rat annular cells and partially attenuates disc degeneration by inhibiting the ROS/NF-kappaB pathway. Oxid Med Cell Longev. 2022;2022:6179444. [49] CARRILLO-MARTINEZ EJ, FLORES-HERNANDEZ FY, SALAZAR-MONTES AM, et al. quercetin, a flavonoid with great pharmacological capacity. Molecules. 2024; 29(5):1000. [50] 张树文.基于氧化应激探讨槲皮素防治椎间盘退变的实验研究[D].乌鲁木齐:新疆医科大学,2021. [51] ZHANG S, LIANG W, ABULIZI Y, et al. Quercetin alleviates intervertebral disc degeneration by modulating p38 mapk-mediated autophagy. Biomed Res Int. 2021;2021:6631562. [52] WANG D, HE X, WANG D, et al. Quercetin suppresses apoptosis and attenuates intervertebral disc degeneration via the SIRT1-autophagy pathway. Front Cell Dev Biol. 2020;8:613006. [53] HE G, CHEN G, LIU W, et al. Salvianolic acid b: a review of pharmacological effects, safety, combination therapy, new dosage forms, and novel drug delivery routes. Pharmaceutics. 2023;15(9):2235. [54] DAI S, LIANG T, SHI X, et al. Salvianolic acid b protects intervertebral discs from oxidative stress-induced degeneration via activation of the jak2/stat3 signaling pathway. Oxid Med Cell Longev. 2021;2021:6672978. [55] ALBERDI E, SANCHEZ-GOMEZ MV, RUIZ A, et al. Mangiferin and morin attenuate oxidative stress, mitochondrial dysfunction, and neurocytotoxicity, induced by amyloid beta oligomers. Oxid Med Cell Longev. 2018;2018:2856063. [56] LUO Y, FU C, WANG Z, et al. Mangiferin attenuates contusive spinal cord injury in rats through the regulation of oxidative stress, inflammation and the Bcl-2 and Bax pathway. Mol Med Rep. 2015;12(5):7132-7138. [57] 梁海峰.靶向缓释褪黑素纳米递送系统在骨关节炎中的治疗作用与相关机制研究[D].广州:南方医科大学,2023. [58] ZHANG Y, LIU T, YANG H, et al. Melatonin: a novel candidate for the treatment of osteoarthritis. Ageing Res Rev. 2022;78:101635. [59] 陈海伟,刘明强,张广智,等.核因子E2相关因子2在椎间盘退变中的作用[J].中国矫形外科杂志,2022,30(4):337-342. [60] SOCACIU AI, IONUT R, SOCACIU MA, et al. Melatonin, an ubiquitous metabolic regulator: functions, mechanisms and effects on circadian disruption and degenerative diseases. Rev Endocr Metab Disord. 2020;21(4):465-478. [61] GE J, ZHOU Q, NIU J, et al. Melatonin protects intervertebral disc from degeneration by improving cell survival and function via activation of the erk1/2 signaling pathway. Oxid Med Cell Longev. 2019;2019:5120275. [62] ZHANG Y, HE F, CHEN Z, et al. Melatonin modulates IL-1beta-induced extracellular matrix remodeling in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration and inflammation. Aging (Albany NY). 2019;11(22):10499-10512. [63] ZHANG Z, LIN J, TIAN N, et al. Melatonin protects vertebral endplate chondrocytes against apoptosis and calcification via the Sirt1-autophagy pathway. J Cell Mol Med. 2019;23(1):177-193. [64] CHEN T, ZHENG L, LUO P, et al. Crosstalk between m6A modification and autophagy in cancer. Cell Biosci. 2024;14(1):44. [65] LEI X, XU Z, HUANG L, et al. The potential influence of melatonin on mitochondrial quality control: a review. Front Pharmacol. 2023;14:1332567. [66] HU X, TIAN X, YANG C, et al. Melatonin-loaded self-healing hydrogel targets mitochondrial energy metabolism and promotes annulus fibrosus regeneration. Mater Today Bio. 2023;23:100811. [67] LOU C, CHEN H, MEI L, et al. Association between menopause and lumbar disc degeneration: an MRI study of 1,566 women and 1,382 men. Menopause. 2017;24(10):1136-1144. [68] JIN LY, LV ZD, WANG K, et al. Estradiol alleviates intervertebral disc degeneration through modulating the antioxidant enzymes and inhibiting autophagy in the model of menopause rats. Oxid Med Cell Longev. 2018;2018:7890291. [69] YANG D, ZHU D, ZHU S, et al. 17beta-Estradiol/extrogen receptor beta alleviates apoptosis and enhances matrix biosynthesis of nucleus pulposus cells through regulating oxidative damage under a high glucose condition. Biomed Pharmacother. 2018;107:1004-1009. [70] LIU S, YANG SD, HUO XW, et al. 17beta-Estradiol inhibits intervertebral disc degeneration by down-regulating MMP-3 and MMP-13 and up-regulating type II collagen in a rat model. Artif Cells Nanomed Biotechnol. 2018;46(sup2):182-191. [71] 徐浩伟,王善金,李丽丽,等.维生素D与椎间盘退变的相关性研究进展[J].中国矫形外科杂志,2020,28(3):239-243. [72] HUANG H, CHENG S, ZHENG T, et al. Vitamin D retards intervertebral disc degeneration through inactivation of the NF-kappaB pathway in mice. Am J Transl Res. 2019;11(4):2496-2506. [73] LAN T, YAN B, GUO W, et al. VDR promotes nucleus pulposus cell mitophagy as a protective mechanism against oxidative stress injury. Free Radic Res. 2022;56(3-4):316-327. [74] TONG T, LIU Z, ZHANG H, et al. Age-dependent expression of the vitamin D receptor and the protective effect of vitamin D receptor activation on H2O2-induced apoptosis in rat intervertebral disc cells. J Steroid Biochem Mol Biol. 2019;190:126-138. [75] CHRISTAKOS S, DHAWAN P, VERSTUYF A, et al. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365-408. [76] 张良明,杨阳,陈振翔,等.中国南方地区中老年患者血清维生素D水平与骨密度的相关性[J].中国组织工程研究,2017,21(28):4448-4453. [77] LI W, NIU Y, QIU Z, et al. New evidence on the controversy over the correlation between vertebral osteoporosis and intervertebral disc degeneration: a systematic review of relevant animal studies. Eur Spine J. 2024;33(6):2354-2379. [78] 王俊武,陈东,南利平,等.中老年腰椎间盘退变程度与椎旁肌退变及维生素D水平的相关性研究[J]. 中国脊柱脊髓杂志,2020,30(6):539-545. [79] CHEN Z, ZHANG S, DUAN P, et al. Intra-articular injection of ascorbic acid enhances microfracture-mediated cartilage repair. Sci Rep. 2024;14(1):3811. [80] YI YY, ZHANG SB, CHEN H, et al. Ascorbic acid promotes nucleus pulposus cell regeneration by regulating proliferation during intervertebral disc degeneration. J Nutr Biochem. 2022;108:109099. [81] 戴丽冰,刘志河,梁伟国,等.维生素C对TNF-α及血清剥夺诱导的人髓核细胞凋亡的作用[J].中国修复重建外科杂志,2015,29(4):490-497. [82] ZIYATDINOVA G, GIMADUTDINOVA L. Recent advances in electrochemical sensors for sulfur-containing antioxidants. Micromachines (Basel). 2023;14(7):1440. [83] RODELLA U, HONISCH C, GATTO C, et al. Antioxidant nutraceutical strategies in the prevention of oxidative stress related eye diseases. Nutrients. 2023;15(10):2283. [84] 肖琳霄.α-硫辛酸通过NF-κB信号通路调控人髓核细胞凋亡[D].长沙:中南大学,2023. [85] LV B, LU L, HU L, et al. Recent advances in GelMA hydrogel transplantation for musculoskeletal disorders and related disease treatment. Theranostics. 2023;13(6):2015-2039. [86] LI Z, FENG Y, ZHANG S, et al. A multifunctional nanoparticle mitigating cytokine storm by scavenging multiple inflammatory mediators of sepsis. ACS Nano. 2023;17(9):8551-8563. [87] ZHOU H, HE J, LIU R, et al. Microenvironment-responsive metal-phenolic network release platform with ROS scavenging, anti-pyroptosis, and ECM regeneration for intervertebral disc degeneration. Bioact Mater. 2024;37:51-71. [88] ZHANG W, LI G, LUO R, et al. Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis. Exp Mol Med. 2022;54(2):129-142. [89] SUN J, YANG F, WANG L, et al. Delivery of coenzyme Q10 loaded micelle targets mitochondrial ROS and enhances efficiency of mesenchymal stem cell therapy in intervertebral disc degeneration. Bioact Mater. 2023;23:247-260. [90] WEI H, CHEN J, WANG S, et al. A nanodrug consisting of doxorubicin and exosome derived from mesenchymal stem cells for osteosarcoma treatment in vitro. Int J Nanomedicine. 2019;14:8603-8610. [91] LIU C, FAN L, GUAN M, et al. A redox homeostasis modulatory hydrogel with GLRX3(+) extracellular vesicles attenuates disc degeneration by suppressing nucleus pulposus cell senescence. ACS Nano. 2023;17(14):13441-13460. [92] DAI Z, XIA C, ZHAO T, et al. Platelet-derived extracellular vesicles ameliorate intervertebral disc degeneration by alleviating mitochondrial dysfunction. Mater Today Bio. 2023;18:100512. |
[1] | 张艺博, 卢健棋, 毛美玲, 庞 延, 董 礼, 杨尚冰, 肖 湘. 类风湿关节炎与冠状动脉粥样硬化的因果关系:GWAS数据库血清代谢物和炎症因子数据[J]. 中国组织工程研究, 2025, 29(在线): 1-9. |
[2] | 余 帅, 刘家伟, 朱 彬, 潘 檀, 李兴龙, 孙广峰, 于海洋, 丁 亚, 王宏亮. 小分子药物治疗骨关节炎的热点问题及应用前景[J]. 中国组织工程研究, 2025, 29(9): 1913-1922. |
[3] | 赵济宇, 王少伟. 叉头框转录因子O1信号通路与骨代谢[J]. 中国组织工程研究, 2025, 29(9): 1923-1930. |
[4] | 李开颖, 魏晓歌, 宋 斐, 杨 楠, 赵振宁, 王 燕, 穆 静, 马惠昇. 理筋手法调控兔骨骼肌损伤修复中瘢痕形成的作用机制[J]. 中国组织工程研究, 2025, 29(8): 1600-1608. |
[5] | 于经邦, 吴亚云. 非编码RNA在肺纤维化过程中的调控作用[J]. 中国组织工程研究, 2025, 29(8): 1659-1666. |
[6] | 王秋月, 靳 攀, 蒲 锐. 运动干预与细胞焦亡在骨关节炎中的作用[J]. 中国组织工程研究, 2025, 29(8): 1667-1675. |
[7] | 袁维勃, 刘 婵, 余丽梅. 肝脏类器官在肝脏疾病模型与移植治疗中的应用潜力[J]. 中国组织工程研究, 2025, 29(8): 1684-1692. |
[8] | 尹 路, 蒋川锋, 陈俊杰, 易 明, 王子赫, 石厚银, 汪国友, 沈骅睿. 沙苑子苷A对关节软骨细胞凋亡的影响[J]. 中国组织工程研究, 2025, 29(8): 1541-1547. |
[9] | 王文涛, 侯振扬, 王熠军, 徐耀增. Apelin-13抑制巨噬细胞M1极化缓解全身炎症性骨丢失[J]. 中国组织工程研究, 2025, 29(8): 1548-1555. |
[10] | 陈 帅, 金 杰, 韩化伟, 田宁晟, 李志伟. 两样本孟德尔随机化分析循环炎症细胞因子与骨密度的因果关联[J]. 中国组织工程研究, 2025, 29(8): 1556-1564. |
[11] | 金 凯, 唐 婷, 李美乐, 谢裕安. 人脐带间充质干细胞条件培养基及外泌体对肝癌细胞增殖、迁移、侵袭和凋亡的影响[J]. 中国组织工程研究, 2025, 29(7): 1350-1355. |
[12] | 艾克帕尔·艾尔肯, 陈晓涛, 吾凡别克·巴合提. 成骨诱导人牙周膜干细胞来源外泌体促进炎症微环境下人牙周膜干细胞成骨分化[J]. 中国组织工程研究, 2025, 29(7): 1388-1394. |
[13] | 万玲玲, 吴梦滢, 张宇骄, 罗青清. 炎性因子干扰素γ以焦亡途径影响人血管平滑肌细胞的迁移和凋亡[J]. 中国组织工程研究, 2025, 29(7): 1422-1428. |
[14] | 彭洪成, 彭国璇, 雷安毅, 林 圆, 孙 红, 宁 旭, 尚显文, 邓 进, 黄明智. 血小板衍生生长因子BB参与生长板损伤修复的作用与机制[J]. 中国组织工程研究, 2025, 29(7): 1497-1503. |
[15] | 喻 婷, 吕冬梅, 邓 浩, 孙 涛, 程 钎. 淫羊藿苷预处理增强人牙周膜干细胞对M1型巨噬细胞的影响[J]. 中国组织工程研究, 2025, 29(7): 1328-1335. |
1.1.6 检索策略 采用主题词和自由词结合的方式进行检索,以PubMed数据库检索策略为例,见图1。
1.3 文献质量评估及数据提取 通过计算机初步检索得到与研究目的相关的中英文文献1 500余篇,经资料收集人员根据纳入及排除标准进一步筛选,选择与此次综述内容相符的文献,最终确定纳入92篇符合标准的文献进行综述。文献筛选流程见图2。
#br#
文题释义:
抗氧化剂:是能够抑制或中和活性氧、减少氧化应激,从而保护细胞和组织免受氧化损伤的一类物质的总称。该文首先介绍氧化应激在椎间盘退变发生发展过程中的关键作用,并总结和分析多酚类抗氧化剂、天然小分子物质、褪黑激素、雌激素、维生素D、维生素C、α-硫辛酸等常见抗氧化剂,以及基于组织工程的新型抗氧化剂在椎间盘退变中的研究进展;探讨了抗氧化剂在椎间盘退变治疗中的多重作用机制。最后,文章不仅强调需要更多临床研究验证抗氧化剂在椎间盘治疗中的安全性,还提出开发新的抗氧化剂组合疗法以及构建纳米水凝胶递送系统等建议,以期提高抗氧化剂的治疗效果,为抗氧化剂在椎间盘退变治疗中的应用提供了新的研究思路。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||