中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (33): 5403-5412.doi: 10.12307/2024.674
• 植入物相关大数据分析 Implant related big data analysis • 上一篇
许 轶,邓宇斌
收稿日期:
2023-09-18
接受日期:
2023-11-07
出版日期:
2024-11-28
发布日期:
2024-01-31
通讯作者:
邓宇斌,博士,教授,中山大学附属第七医院,中山大学(深圳),广东省深圳市 518107
作者简介:
许轶,女,广东省广州市人,汉族,2017年中山大学毕业,博士,副主任医师,主要从事骨科康复和神经康复研究。
基金资助:
Xu Yi, Deng Yubin
Received:
2023-09-18
Accepted:
2023-11-07
Online:
2024-11-28
Published:
2024-01-31
Contact:
Deng Yubin, PhD, Professor, Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University (Shenzhen), Shenzhen 518107, Guangdong Province, China
About author:
Xu Yi, MD, PhD, Associate chief physician, Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University (Shenzhen), Shenzhen 518107, Guangdong Province, China
Supported by:
摘要:
文题释义:
脊髓损伤:是由于创伤性或非创伤性原因对脊髓造成损伤,导致患者出现运动、感觉及大小便等功能障碍的严重致残性疾病,常见引起截瘫,甚至四肢瘫痪。
背景:脊髓损伤危害严重,损伤后步行功能障碍最影响患者的日常生活能力,在该领域运用外骨骼机器人开展辅助步行康复研究日趋活跃。
目的:应用CiteSpace可视化软件绘制脊髓损伤后外骨骼机器人辅助步行为主题的科学知识图谱,并探讨近10年该领域研究现状、热点及未来趋势,为该领域后续科学研究和临床运用提供借鉴。结果与结论:①共纳入544篇高质量文献,近10年该领域发文量、总被引频次呈增长趋势;②发文量排名前3的国家依次是美国、中国、意大利,发文量排名前3研究机构是美国退伍军人事务部、美国退伍军人健康管理局、瑞士联邦理工学院;③被引文献频次最高(167次)和中介中心性最高(0.13)的作者均为美国宾夕法尼亚Esquenazi A团队,在该领域具有较高影响力;④对被引频次、中介中心性前5共被引文献分析显示:目前针对脊髓损伤患者配备动力外骨骼设备步行康复研究重点包括在机构、家庭等真实环境中步行康复训练安全性判断、优势分析、个体化培训计划设计,动力外骨骼设备应用于胸椎及以下节段运动功能完全丧失脊髓损伤患者辅助步行效果优劣、影响因素及应用潜力等;⑤近年该领域研究热点集中于个体化(individuals)、步态(gait)、动力外骨骼( powered exoskeleton)、减重支持(body weight support)、功能性电刺激(functional electrical stimulation)、康复(rehabilitation)、辅助技术(assistive technology)、步行活动(ambulation)、恢复(recovery)等内容;⑥该领域研究早期多应用于脑卒中患者,前沿包括减重支持、往复式步态矫形器及功能性电刺激等技术手段,脊髓损伤外骨骼机器人辅助步行康复研究近年呈现上升趋势,关注点逐渐向以适应性控制为机制的医用下肢外骨骼设备研制、安全性提升、应用潜力挖掘等前沿方向转变,研究检测手段注重联合功能性近红外光谱成像等高端技术,而关注患者生活质量、提升运动训练能力及改善机体结构为该领域未来的研究热点。
https://orcid.org/0000-0001-7829-6989(许轶);https://orcid.org/0000-0003-2664-8254(邓宇斌)
中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程
中图分类号:
许 轶, 邓宇斌 . 外骨骼机器人辅助步行康复治疗脊髓损伤:研究热点的CiteSpace分析[J]. 中国组织工程研究, 2024, 28(33): 5403-5412.
Xu Yi, Deng Yubin. Exoskeleton-assisted walking rehabilitation for spinal cord injury: CiteSpace analysis of research hotspots[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(33): 5403-5412.
[1] YUAN S, SHI Z, CAO F, et al. Epidemiological features of spinal cord injury in china: a systematic review. Front Neurol. 2018;9:683. [2] JAZAYERI SB, MAROUFI SF, MOHAMMADI E, et al. Incidence of traumatic spinal cord injury worldwide: a systematic review, data integration, and update. World Neurosurg X. 2023;18:100171. [3] WEST CR, ALYAHYA A, LAHER I, et al. Peripheral vascular function in spinal cord injury: a systematic review. Spinal Cord. 2013;51(1):10-19. [4] KOYAMA S, TANABE S, SAITOH E, et al. Characterization of unexpected postural changes during robot-assisted gait training in paraplegic patients. Spinal Cord. 2016;54(2):120-125. [5] KHAN AS, LIVINGSTONE DC, HURD CL, et al. Retraining walking over ground in a powered exoskeleton after spinal cord injury: a prospective cohort study to examine functional gains and neuroplasticity. J Neuroeng Rehabil. 2019;16(1):145. [6] NAM KY, KIM HJ, KWON BS, et al. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. J Neuroeng Rehabil. 2017;14(1):24. [7] XIANG XN, DING MF, ZONG HY, et al. The safety and feasibility of a new rehabilitation robotic exoskeleton for assisting individuals with lower extremity motor complete lesions following spinal cord injury (SCI): an observational study. Spinal Cord. 2020;58(7):787-794. [8] TSAI CY, DELGADO AD, WEINRAUCH WJ, et al. Exoskeletal-assisted walking during acute inpatient rehabilitation leads to motor and functional improvement in persons with spinal cord injury: a pilot study. Arch Phys Med Rehabil. 2020;101(4):607-612. [9] CHEN C. Searching for intellectual turning points: progressive knowledge domain visualization. Proc Natl Acad Sci U S A. 2004;101 Suppl 1(Suppl 1): 5303-5310. [10] CHEN C, SONG M. Visualizing a field of research: a methodology of systematic scientometric reviews. PLoS One. 2019;14(10):e0223994. [11] ESQUENAZI A, TALATY M, PACKEL A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012; 91(11):911-921. [12] ZEILIG G, WEINGARDEN H, ZWECKER M, et al. Safety and tolerance of the ReWalk exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. J Spinal Cord Med. 2012;35(2):96-101. [13] SALGA M, GATIN L, DELTOMBE T, et al. International recommendations to manage poststroke equinovarus foot deformity validated by a panel of experts using delphi. Arch Phys Med Rehabil. 2023;104(3):372-379. [14] ESQUENAZI A, BRASHEAR A, DELTOMBE T, et al. The effect of repeated abobotulinumtoxinA (Dysport(R)) injections on walking velocity in persons with spastic hemiparesis caused by stroke or traumatic brain injury. PM R. 2021;13(5):488-495. [15] AWAD LN, ESQUENAZI A, FRANCISCO GE, et al. The ReWalk ReStore soft robotic exosuit: a multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation. J Neuroeng Rehabil. 2020;17(1):80. [16] ESQUENAZI A, TALATY M. Robotics for Lower Limb Rehabilitation. Phys Med Rehabil Clin N Am. 2019;30(2):385-397. [17] MILLER LE, ZIMMERMANN AK, HERBERT WG. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices (Auckl). 2016;9:455-466. [18] LOUIE DR, ENG JJ, LAM T, et al. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study. J Neuroeng Rehabil. 2015;12:82. [19] BAUNSGAARD CB, NISSEN UV, BRUST AK, et al. Exoskeleton gait training after spinal cord injury: an exploratory study on secondary health conditions. J Rehabil Med. 2018;50(9):806-813. [20] AACH M, CRUCIGER O, SCZESNY-KAISER M, et al. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J. 2014;14(12):2847-2853. [21] ASSELIN PK, AVEDISSIAN M, KNEZEVIC S, et al. Training persons with spinal cord injury to ambulate using a powered exoskeleton. J Vis Exp. 2016. doi: 10.3791/54071. [22] MORAWIETZ C, MOFFAT F. Effects of locomotor training after incomplete spinal cord injury: a systematic review. Arch Phys Med Rehabil. 2013;94(11): 2297-2308. [23] TEFERTILLER C, HAYS K, JONES J, et al. Initial outcomes from a multicenter study utilizing the indego powered exoskeleton in spinal cord injury. Top Spinal Cord Inj Rehabil. 2018;24(1):78-85. [24] ASSELIN P, KNEZEVIC S, KORNFELD S, et al. Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J Rehabil Res Dev. 2015;52(2):147-158. [25] DEL-AMA AJ, GIL-AGUDO A, PONS JL, et al. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J Neuroeng Rehabil. 2014;11:27. [26] MCINTOSH K, CHARBONNEAU R, BENSAADA Y, et al. The safety and feasibility of exoskeletal-assisted walking in acute rehabilitation after spinal cord injury. Arch Phys Med Rehabil. 2020;101(1):113-120. [27] FANG CY, TSAI JL, LI GS, et al. Effects of robot-assisted gait training in individuals with spinal cord injury: a meta-analysis. Biomed Res Int. 2020; 2020:2102785. [28] KWON SH, LEE BS, LEE HJ, et al. Energy efficiency and patient satisfaction of gait with knee-ankle-foot orthosis and robot (ReWalk)-assisted gait in patients with spinal cord injury. Ann Rehabil Med. 2020;44(2):131-141. [29] EDWARDS DJ, FORREST G, CORTES M, et al. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial. Spinal Cord. 2022;60(6):522-532. [30] OKAWARA H, TASHIRO S, SAWADA T, et al. Neurorehabilitation using a voluntary driven exoskeletal robot improves trunk function in patients with chronic spinal cord injury: a single-arm study. Neural Regen Res. 2022; 17(2):427-432. [31] KOSEKI K, TAKAHASHI K, YAMAMOTO S, et al. Use of robot-assisted ankle training in a patient with an incomplete spinal cord injury: a case report. J Funct Morphol Kinesiol. 2023;8(1):301. [32] EZAKI S, KADONE H, KUBOTA S, et al. Analysis of gait motion changes by intervention using robot suit hybrid assistive limb (HAL) in myelopathy patients after decompression surgery for ossification of posterior longitudinal ligament. Front Neurorobot. 2021;15:650118. [33] TAMBURELLA F, TAGLIAMONTE NL, PISOTTA I, et al. Neuromuscular controller embedded in a powered ankle exoskeleton: effects on gait, clinical features and subjective perspective of incomplete spinal cord injured subjects. IEEE Trans Neural Syst Rehabil Eng. 2020;28(5):1157-1167. [34] HONG E, GORMAN PH, FORREST GF, et al. Mobility skills with exoskeletal-assisted walking in persons with SCI: results from a three center randomized clinical trial. Front Robot AI. 2020;7:93. [35] JANG YC, PARK HK, HAN JY, et al. Cardiopulmonary function after robotic exoskeleton-assisted over-ground walking training of a patient with an incomplete spinal cord injury: Case report. Medicine (Baltimore). 2019; 98(50):e18286. [36] WU CH, MAO HF, HU JS, et al. The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury. J Neuroeng Rehabil. 2018;15(1):14. [37] SUTOR TW, GHATAS MP, GOETZ LL, et al. Exoskeleton training and trans-spinal stimulation for physical activity enhancement after spinal cord injury (EXTra-SCI): an exploratory study. Front Rehabil Sci. 2022;2:789422. [38] YANG A, ASSELIN P, KNEZEVIC S, et al. Assessment of in-hospital walking velocity and level of assistance in a powered exoskeleton in persons with spinal cord injury. Top Spinal Cord Inj Rehabil. 2015;21(2):100-109. [39] GUANZIROLI E, CAZZANIGA M, COLOMBO L, et al. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control. Eur J Phys Rehabil Med. 2019;55(2): 209-216. [40] MOLTEDO M, BACEK T, SERRIEN B, et al. Walking with a powered ankle-foot orthosis: the effects of actuation timing and stiffness level on healthy users. J Neuroeng Rehabil. 2020;17(1):98. [41] ANTONELLIS P, MOHAMMADZADEH GONABADI A, MYERS SA, et al. Metabolically efficient walking assistance using optimized timed forces at the waist. Sci Robot. 2022;7(64):eabh1925. [42] KIM HS, PARK JH, LEE HS, et al. Effects of wearable powered exoskeletal training on functional mobility, physiological health and quality of life in non-ambulatory spinal cord injury patients. J Korean Med Sci. 2021;36(12):e80. [43] TANG X, WANG X, JI X, et al. A wearable lower limb exoskeleton: reducing the energy cost of human movement. Micromachines (Basel). 2022; 13(6):900. [44] RAITHATHA R, CARRICO C, POWELL ES, et al. Non-invasive brain stimulation and robot-assisted gait training after incomplete spinal cord injury: a randomized pilot study. NeuroRehabilitation. 2016;38(1):15-25. [45] YOZBATIRAN N, KESER Z, DAVIS M, et al. Transcranial direct current stimulation (tDCS) of the primary motor cortex and robot-assisted arm training in chronic incomplete cervical spinal cord injury: a proof of concept sham-randomized clinical study. NeuroRehabilitation. 2016;39(3):401-411. [46] CUI Z, LI Y, HUANG S, et al. BCI system with lower-limb robot improves rehabilitation in spinal cord injury patients through short-term training: a pilot study. Cogn Neurodyn. 2022;16(6):1283-1301. [47] KRENN MJ, WHITE JM, STOKIC DS, et al. Neuromodulation with transcutaneous spinal stimulation reveals different groups of motor profiles during robot-guided stepping in humans with incomplete spinal cord injury. Exp Brain Res. 2023;241(2):365-382. [48] LI Y, WEI B, ZHONG Y, et al. A bibliometric analysis of global research on spinal cord injury: 1999-2019. Spinal Cord. 2022;60(4):281-287. [49] LIU S, SONG L, DAI W, et al. Worldwide productivity and research trend of publications concerning electroactive materials and spinal cord injury: a bibliometric study. Front Bioeng Biotechnol. 2023;11:1094059. [50] RODRIGUEZ-FERNANDEZ A, LOBO-PRAT J, FONT-LLAGUNES JM. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. J Neuroeng Rehabil. 2021;18(1):22. [51] RAJASEKARAN V, LOPEZ-LARRAZ E, TRINCADO-ALONSO F, et al. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals. J Neuroeng Rehabil. 2018;15(1):4. [52] WU AR. Human biomechanics perspective on robotics for gait assistance: challenges and potential solutions. Proc Biol Sci. 2021;288(1956):20211197. [53] ZHAO D, ZHANG Y, ZHENG Y, et al. Double-target neural circuit-magnetic stimulation improves motor function in spinal cord injury by attenuating astrocyte activation. Neural Regen Res. 2023;18(5):1062-1066. [54] SUTOR TW, KURA J, MATTINGLY AJ, et al. The effects of exercise and activity-based physical therapy on bone after spinal cord injury. Int J Mol Sci. 2022. doi: 10.3390/ijms23020608. [55] MICKENS MN, PERRIN P, GOLDSMITH JA, et al. Leisure-time physical activity, anthropometrics, and body composition as predictors of quality of life domains after spinal cord injury: an exploratory cross-sectional study. Neural Regen Res. 2022n;17(6):1369-1375. [56] GORACZKO A, ZUREK G, LACHOWICZ M, et al. Quality of life after spinal cord injury: a multiple case study examination of elite athletes. Int J Environ Res Public Health. 2020;17(20):7437. [57] NIZEYIMANA E, JOSEPH C, PHILLIPS J. Quality of life after traumatic spinal cord injury in a developing context: the influence of contextual factors and injury characteristics. Disabil Rehabil. 2022;44(10):2020-2026. [58] JO HJ, PEREZ MA. Corticospinal-motor neuronal plasticity promotes exercise-mediated recovery in humans with spinal cord injury. Brain. 2020; 143(5):1368-1382. [59] SANTAMARIA V, LUNA TD, AGRAWAL SK. Feasibility and tolerance of a robotic postural training to improve standing in a person with ambulatory spinal cord injury. Spinal Cord Ser Cases. 2021;7(1):94. [60] SUN T, DAI Z, MANOONPONG P. Robust and reusable self-organized locomotion of legged robots under adaptive physical and neural communications. Front Neural Circuits. 2023;17:1111285. [61] XIANG XN, ZONG HY, OU Y, et al. Exoskeleton-assisted walking improves pulmonary function and walking parameters among individuals with spinal cord injury: a randomized controlled pilot study.J Neuroeng Rehabil. 2021;18:86. [62] CHEN SJ, WANG ZB, LI YQ, et al. Safety and feasibility of a novel exoskeleton for locomotor rehabilitation of subjects with spinal cord injury: a prospective, multi-center, and cross-over clinical trial. Front Neurorobot. 2022;16:848443. [63] NISTOR-CSEPPENTO CD, GHERLE A, NEGRUT N, et al. The outcomes of robotic rehabilitation assisted devices following spinal cord injury and the prevention of secondary associated complications. Medicina (Kaunas). 2022;58(10):1447. [64] GIL-AGUDO A, MEGIA-GARCIA A, PONS JL, et al. Exoskeleton-based training improves walking independence in incomplete spinal cord injury patients: results from a randomized controlled trial. J Neuroeng Rehabil. 2023;20:36. |
[1] | 宋佳婷, 陈建敏, 王柯文, 黄蓝莹, 徐森明, 桂裕昌, 许建文. 创伤性脊髓损伤患者血清和尿液的代谢组学分析[J]. 中国组织工程研究, 2024, 28(在线): 1-6. |
[2] | 周邦瑜, 李 杰, 阮玉山, 耿福能, 李绍波. 美洲大蠊研粉干预脊髓半横断大鼠运动功能和自噬蛋白Beclin-1的表达[J]. 中国组织工程研究, 2024, 28(8): 1223-1228. |
[3] | 徐灿丽, 何文星, 汪 磊, 吴芳婷, 王佳慧, 段雪琳, 赵铁建, 赵 斌, 郑 洋. 肝脏类器官研究的文献计量学分析[J]. 中国组织工程研究, 2024, 28(7): 1099-1104. |
[4] | 孙宇康, 宋丽娟, 温春丽, 丁智斌, 田 昊, 马 东, 马存根, 翟晓艳. 基于Web of Science近十年干细胞治疗心肌梗死的可视化分析[J]. 中国组织工程研究, 2024, 28(7): 1143-1148. |
[5] | 曾凡卓, 李雨欣, 孙嘉晨, 谷欣阳, 文 山, 田 鹤, 梅晰凡. 脊髓损伤模型小胶质细胞的高效移植替换策略[J]. 中国组织工程研究, 2024, 28(7): 1007-1014. |
[6] | 刘 涛, 张文凯, 马子谦, 张 焱, 陈学明. 利鲁唑干预脊髓损伤大鼠小胶质细胞中NLRP3炎性小体的活化[J]. 中国组织工程研究, 2024, 28(7): 1036-1042. |
[7] | 陈泽鹏, 侯永辉, 陈树东, 侯 宇, 林定坤. 牛磺熊去氧胆酸干预缺糖缺氧条件下脊髓神经元的凋亡[J]. 中国组织工程研究, 2024, 28(4): 528-534. |
[8] | 张 明, 王 斌, 贾 凡, 陈 杰, 唐 玮. 基于脑电图的脑机接口技术在脑卒中患者上肢运动功能康复中的应用[J]. 中国组织工程研究, 2024, 28(4): 581-586. |
[9] | 高永昌, 付彦涛, 赵 昕, 崔庆峰, 张志峰, 陈世斌. 步行运动下缺血性坏死股骨头力学性能及塌陷风险预测[J]. 中国组织工程研究, 2024, 28(33): 5265-5269. |
[10] | 袁艳丽, 潘月军, 关天民, 程 楷, 王相恒. 中外脊柱侧弯矫形器的文献计量学与可视化分析[J]. 中国组织工程研究, 2024, 28(33): 5396-5402. |
[11] | 宋佳婷, 陈建敏, 王柯文, 黄蓝莹, 徐森明, 桂裕昌, 许建文. 创伤性脊髓损伤患者血清和尿液的代谢组学分析[J]. 中国组织工程研究, 2024, 28(32): 5085-5090. |
[12] | 闫 杰, 周 静, 赵敬璞, 张清芳, 周明超, 王玉龙. 高精度经颅直流电刺激研究热点的可视化分析[J]. 中国组织工程研究, 2024, 28(32): 5110-5115. |
[13] | 滕益霖, 席德双, 冯彦斌, 梁 宇, 邓 豪, 曾高峰, 宗少晖. 吲哚丙酸抑制小胶质细胞M1极化治疗脊髓损伤[J]. 中国组织工程研究, 2024, 28(31): 5010-5016. |
[14] | 张 妍, 张文凯, 张雯秀, 刘 涛, 马子谦, 陈学明. Circ0005512促进雌性大鼠脊髓损伤后小胶质细胞/巨噬细胞焦亡[J]. 中国组织工程研究, 2024, 28(31): 5029-5035. |
[15] | 陶广义, 王琳梓, 杨 彬, 黄俊卿. 人工智能在脊柱畸形领域研究热点的可视化分析[J]. 中国组织工程研究, 2024, 28(30): 4915-4920. |
1.1.4 检索词 主题词包括“Spinal Cord Injury,SCI”“walk”“robot”等内容,按设计主题词检索方式进行检索,具体参见表1。
1.1.5 检索文献类型 论文、会议录论文、综述论文及在线发表等文章。
1.1.7 检索策略 选择 Web of Science核心合集,基于布尔逻辑运算符号——逻辑与“AND”、逻辑或“OR”、逻辑非“NOT”等进行检索,选择主题TS,搜索框中输入“robot OR exoskeleton OR (exoskeleton-assisted walking) OR EAW”,检索策略见表1,检索全部文献共670篇,进一步将出版年设置为 2014-01-01/2023-09-01,检索文献类型按“论文、会议录论文、综述论文、在线发表”进行限制,共剔除126篇文献,最后纳入研究文献数目为544篇。
1.2 入组标准#br#
文题释义:
脊髓损伤:是由于创伤性或非创伤性原因对脊髓造成损伤,导致患者出现运动、感觉及大小便等功能障碍的严重致残性疾病,常见引起截瘫,甚至四肢瘫痪。文章利用Web of Science核心数据库,通过CiteSpace可视化分析软件绘制与发文量、国家/机构合作、高影响力作者/文献共被引、关键词共现/聚类/突现等信息相关科学知识图谱,结合既往研究证据,探讨近10年运用外骨骼机器人对脊髓损伤患者开展辅助步行康复的研究现状、热点和未来发展趋势。研究清晰展示各关键内容间关联性和发展动态,为研究人员提供全面而准确的信息基础,以便更好地指导未来研究方向和临床实践。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||