中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (22): 3502-3508.doi: 10.12307/2024.487

• 纳米生物材料 nanobiomaterials • 上一篇    下一篇

纳米晶仿生钙磷颗粒的理化性质及细胞相容性

陈明学1,牛建华2,林海燕3,吴  刚3,万  奔1,3,4   

  1. 1首都医科大学附属北京积水潭医院,北京市  100035;2上海市黄浦区牙病防治所,上海市  200020;3杭州医学院,浙江省杭州市  310059;4杭州彗搏科技有限公司,浙江省杭州市  311217
  • 收稿日期:2023-07-05 接受日期:2023-09-25 出版日期:2024-08-08 发布日期:2024-01-20
  • 通讯作者: 万奔,医疗器械研发工程师,首都医科大学附属北京积水潭医院,北京市 100035;杭州医学院,浙江省杭州市 310059;杭州彗搏科技有限公司,浙江省杭州市 311217
  • 作者简介:陈明学,男,1992年生,海南省文昌市人,汉族,博士,医师,主要从事组织工程研究。 牛建华,女,1982年生,上海市人,汉族,医师,主要从事基础医学研究。
  • 基金资助:
    国家自然科学基金青年科学基金项目(82202784):3D打印多孔钛金属笼促进早期股骨头坏死修复的实验研究,项目负责人:陈明学;浙江省重点研发计划项目(2021C04013):国际合作技术研发与示范推广项目-高效骨引导/诱导骨修复颗粒的研发,项目负责人:吴刚;浙江省“领雁”研发攻关计划项目(2022C03G1363463),口腔疾病诊治新技术研究-高效除菌和诱导骨再生的植体周炎治疗新技术研发与转化应用,项目负责人:林海燕

Physicochemical properties and cytocompatibility of biomimetically precipitated nanocrystalline calcium phosphate granules

Chen Mingxue1, Niu Jianhua2, Lin Haiyan3, Wu Gang3, Wan Ben1, 3, 4   

  1. 1Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China; 2Shanghai Huangpu District Dental Disease Prevention and Control Institute, Shanghai 200020, China; 3Hangzhou Medical College, Hangzhou 310059, Zhejiang Province, China; 4Hangzhou Huibo Science and Technology Co., Ltd., Hangzhou 311217, Zhejiang Province, China
  • Received:2023-07-05 Accepted:2023-09-25 Online:2024-08-08 Published:2024-01-20
  • Contact: Wan Ben, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China; Hangzhou Medical College, Hangzhou 310059, Zhejiang Province, China; Hangzhou Huibo Science and Technology Co., Ltd., Hangzhou 311217, Zhejiang Province, China
  • About author:Chen Mingxue, MD, Physician, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China Niu Jianhua, Physician, Shanghai Huangpu District Dental Disease Prevention and Control Institute, Shanghai 200020, China
  • Supported by:
    National Natural Science Foundation of China (Youth Science Foundation Project), No. 82202784 (to CMX); Key Research & Development Plan Project in Zhejiang Province, No. 2021C04013 (to WG); Zhejiang Province “Leading Wild Goose” Research & Development Project, No. 2022C03G1363463 (to LHY)

摘要:


文题释义:

仿生钙磷颗粒:指利用仿生技术合成的具有与骨组织相似结构和性能的钙磷颗粒,用于骨缺损修复。
理化表征:指用物理或化学方法对物质进行化学性质的分析、测试或鉴定,并阐明物质的化学特性。理化表征可以分为微观形貌表征、物相分析、热性能分析、成分分析与力学性能测试等。


背景:临床上人工合成的羟基磷灰石陶瓷颗粒被广泛用于修复大体积骨缺损,但制备过程中的高温烧结会降低羟基磷灰石陶瓷颗粒的可降解性和生物活性,限制其骨修复效果。

目的:采用新型低温沉积技术制备纳米晶仿生钙磷颗粒,表征其理化性能与细胞相容性。
方法:采用改良后的过饱和钙磷矿化液和重复静置重悬洗涤方式制备纳米晶仿生钙磷颗粒,以羟基磷灰石生物陶瓷颗粒为对照,通过扫描电镜、X射线衍射仪、傅里叶变换红外光谱仪表征两种颗粒的形貌和物相组成,通过BET-N2法、硬度和接触角测试表征两种颗粒的比表面积、孔隙度分布、硬度和亲水性行为,利用BCA法检测两种颗粒对牛血清白蛋白和胎牛血清蛋白的吸附性能。将两种颗粒或颗粒浸提液分别与人脐带间充质干细胞共培养,采用MTT法检测细胞增殖。

结果与结论:①扫描电镜显示两种颗粒表面略微粗糙并伴有微小颗粒存在,羟基磷灰石生物陶瓷颗粒表面致密光滑,纳米晶仿生钙磷颗粒主要由不均匀纳米尺寸的针/板状晶体组成,并在晶体之间形成纳米孔结构。X射线衍射、傅里叶变换红外光谱显示,相较于羟基磷灰石生物陶瓷颗粒,纳米晶仿生钙磷颗粒的结晶粒小、结晶度低,含有更多的结合水和碳酸根基团。与羟基磷灰石生物陶瓷颗粒相比,纳米晶仿生钙磷颗粒具有更高的比表面积、更好的亲水性、更低的硬度与更高的蛋白吸附能力。②MTT检测结果显示,两种颗粒浸提液基本无细胞毒性,人脐带间充质干细胞在两种颗粒表面存活良好,并且纳米晶仿生钙磷颗粒表面的细胞增殖活性更强。③结果表明与羟基磷灰石生物陶瓷颗粒相比,纳米晶仿生钙磷颗粒具有更好的理化性能与细胞相容性。

https://orcid.org/0000-0001-9689-7286(陈明学);https://orcid.org/0009-0002-5774-701X(牛建华)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: 纳米晶仿生钙磷颗粒, 羟基磷灰石, 骨再生修复, 生物相容性, 蛋白吸附, 人脐带间充质干细胞

Abstract: BACKGROUND: Artificially synthesized hydroxyapatite ceramic granules are widely used in clinical practice to repair large-volume bone defects. However, the osteogenic effect of hydroxyapatite ceramic granules prepared by high-temperature sintering is limited by their low degradability and bioactivity.  
OBJECTIVE: To prepare biomimetically precipitated nanocrystalline calcium phosphate granules by a novel low-temperature deposition technique, and to characterize their physicochemical properties and cytocompatibility. 
METHODS: Biomimetically precipitated nanocrystalline calcium phosphate granules were prepared using a modified supersaturated calcium phosphate mineralization solution and a repeated settling and decantation washing method. Hydroxyapatite bioceramic granules were used as the control. The morphology and phase composition of the granules were characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The specific surface area, porosity distribution, hardness and hydrophilicity of the granules were characterized by BET-N2 method, hardness test, and contact angle test. The adsorption properties of the granules for bovine serum albumin and fetal bovine serum protein were determined by bicinchoninic acid assay. The two kinds of granules or granule extracts were co-cultured with human umbilical cord mesenchymal stem cells, and the cell proliferation was detected by MTT assay. 
RESULTS AND CONCLUSION: (1) Scanning electron microscopy showed that the surface of the two kinds of particles was slightly rough and accompanied by tiny particles, the surface of the hydroxyapatite bioceramic particles was dense and smooth, and the biomimetically precipitated nanocrystalline calcium phosphate granules were mainly composed of needle/plate crystals with non-uniform nanometer size, and formed a nanopore structure between the crystals. X-ray diffraction and Fourier transform infrared spectroscopy exhibited that compared with hydroxyapatite bioceramic granules, biomimetically precipitated nanocrystalline calcium phosphate granules had smaller crystalline particles, lower crystallinity, and more binding water and carbonic acid groups. Compared with hydroxyapatite bioceramic granules, biomimetically precipitated nanocrystalline calcium phosphate granules had higher specific surface area, better hydrophilicity, lower hardness, and higher protein adsorption capacity. (2) The results of MTT assay showed that the two kinds of granule extracts had no cytotoxicity, human umbilical cord mesenchymal stem cells survived well on the surface of the two kinds of granules, and the biomimetically precipitated nanocrystalline calcium phosphate granules had stronger cell proliferation activity. (3) These findings indicate that compared with hydroxyapatite bioceramic granules, biomimetically precipitated nanocrystalline calcium phosphate granules have better physicochemical properties and cytocompatibility. 

Key words: biomimetically precipitated nanocrystalline calcium phosphate granule, hydroxyapatite, bone regeneration and repair, biocompatibility, protein adsorption, human umbilical cord mesenchymal stem cell

中图分类号: