中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (14): 2166-2172.doi: 10.12307/2024.332

• 组织构建相关数据分析 Date analysis of organization construction • 上一篇    下一篇

增生性瘢痕差异表达基因及小分子药物预测的生物信息学分析与验证

左  俊,马少林   

  1. 新疆医科大学第一附属医院整形科,新疆维吾尔自治区乌鲁木齐市  830000
  • 收稿日期:2023-03-21 接受日期:2023-05-25 出版日期:2024-05-18 发布日期:2023-07-28
  • 通讯作者: 马少林,硕士,主任医师,教授,博士生导师,新疆医科大学第一附属医院整形科,新疆维吾尔自治区乌鲁木齐市 830000
  • 作者简介:左俊,男,1985年生,湖南省衡阳市人,汉族,新疆医科大学第一附属医院在读博士,主治医师,主要从事整形美容外科临床与科研工作。
  • 基金资助:
    国家自然科学基金地区科学基金项目(81760345),项目负责人:马少林;湖南省自然科学基金青年基金项目(2021JJ40487),项目负责人:左俊

Bioinformatics analysis and validation of differentially expressed genes and small molecule drug prediction in proliferative scar

Zuo Jun, Ma Shaolin   

  1. Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
  • Received:2023-03-21 Accepted:2023-05-25 Online:2024-05-18 Published:2023-07-28
  • Contact: Ma Shaolin, Master, Chief physician, Professor, Doctoral supervisor, Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
  • About author:Zuo Jun, MD candidate, Attending physician, Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
  • Supported by:
    National Natural Science Foundation of China (Regional Program), No. 81760345 (to MSL); Youth Program of Natural Science Foundation of Hunan Province, No. 2021JJ40487 (to ZJ)

摘要:


文题释义:

生物信息学:作为一门结合了生物学与计算科学的新兴学科,被用于快速、大规模地获取生物信息,揭示疾病的分子机制。
增生性瘢痕:是由胶原蛋白等细胞外基质成分过度沉积以及成纤维细胞增殖和凋亡失衡引起的一种皮肤纤维化疾病。皮肤创伤后增生性瘢痕的总体发生率为40%-70%,烧伤后的发生率甚至高达80%。


背景:增生性瘢痕是以成纤维细胞过度增殖、表皮增厚和角质层功能不良为特征的皮肤纤维化疾病,目前其具体发病机制仍不清楚。

目的:基于生物信息学筛选增生性瘢痕相关数据集的核心(Hub)基因及重要信号通路,再用细胞实验加以验证,预测对其可能有治疗作用的小分子药物。
方法:从基因表达综合数据库搜索增生性瘢痕相关的数据集,通过R软件筛选差异表达基因,对差异表达基因进行基因本体论和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Gnomes,KEGG)富集分析,使用String在线平台构建差异表达基因的蛋白质相互作用网络,然后分别利用Cytoscape软件中的Cytohubba和MCODE插件筛选出蛋白质相互作用网络中的关键基因和核心模块,进一步将上述关键基因和构成核心模块的基因求交集得到Hub基因,通过荧光定量PCR验证Hub基因mRNA在人增生性瘢痕与正常皮肤表皮干细胞中的表达差异,并利用人类蛋白图谱中组织学数据验证Hub基因编码蛋白在2种组织中表达量和分布的差异,最后用connectivity map数据库预测针对增生性瘢痕的潜在作用药物。

结果与结论:①筛选出的差异表达基因中上调基因102个、下调基因702个,基因本体论和KEGG分析结果显示,富集的信号通路及生物学过程主要涉及紧密连接、花生四烯酸代谢、细胞外基质受体交互、表皮发育和角质化等;②取交集得到8个Hub基因与调控胆固醇代谢的甲羟戊酸途径密切相关,分别是HMGCS1、DHCR7、MSMO1、FDPS、MVK、HMGCR、MVD和ACAT2;③荧光定量PCR结果显示,相比正常皮肤组,增生性瘢痕组HMGCS1、DHCR7、MSMO1、FDPS、HMGCR、MVD和ACAT2 mRNA的表达均显著下降(P < 0.05) ,而MVK mRNA的表达无明显变化(P > 0.05);④除MVK外,其余Hub基因编码蛋白在正常皮肤组织中表达水平均高于增生性瘢痕组织(P < 0.05);⑤评分排列前10的候选药物包括蛋白激酶A抑制剂(H-89)、丝氨酸蛋白酶抑制剂(Dabigatran-Etexilate)、FLT3抑制剂(舒尼替尼)等,其中白藜芦醇和β-谷甾醇均为植物来源;⑥提示与甲羟戊酸代谢途径密切相关的Hub基因可能通过调控脂质代谢影响表皮结构与功能,这可能是增生性瘢痕的重要发病机制之一,此次研究筛选的小分子化合物可作为治疗增生性瘢痕的候选药物。

https://orcid.org/0000-0002-8962-616X  (左俊)

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

关键词: 增生性瘢痕, 生物信息学, 成纤维细胞, 表皮干细胞, 角质化, 脂质代谢, 甲羟戊酸代谢途径, 药物预测

Abstract: BACKGROUND: Hypertrophic scar is a skin fibrosis disease characterized by excessive proliferation of fibroblasts, epidermal thickening, and stratum corneum dysfunction. At present, the pathogenesis of Hypertrophic scar is still unclear. 
OBJECTIVE: To screen the core (Hub) genes and important signaling pathways in hypertrophic scar-related datasets based on bioinformatics, and then verify them by cell experiments to predict small molecule drugs that may have therapeutic effects on hypertrophic scar. 
METHODS: Datasets related to hypertrophic scar were searched from Gene Expression Omnibus (GEO) database, and differentially expressed genes were identified by R software analysis. Gene ontology and KEGG enrichment analyses were performed for differentially expressed genes. Protein-protein interaction network of differentially expressed genes was constructed using String online platform. Then, the key genes and core modules in the protein-protein interaction network were screened by Cytohubba and MCODE plugin-in Cytoscape software respectively, and the Hub genes were obtained by the intersection of the above key genes and the genes that formed the core module. Real-time fluorescent quantitative PCR was used to verify the difference in Hub gene mRNA expression between human hypertrophic scar and normal skin epidermal stem cells. The histological data from the Human Protein Atlas were used to verify the differences in the expression and distribution of Hub gene-encoded proteins in the two kinds of human tissues. Finally, the potential drugs for hypertrophic scar were predicted by the connectivity map database. 
RESULTS AND CONCLUSION: Among the identified differentially expressed genes, 102 genes were up-regulated and 702 genes were down-regulated. Gene ontology and KEGG analysis showed that the enriched signaling pathways and biological processes were mainly involved in tight junction, arachidonic acid metabolism, extracellular matrix receptor interaction, epidermal development and keratinization. Eight Hub genes were found to be closely related to the mevalonate pathway that regulates cholesterol metabolism, including HMGCS1, DHCR7, MSMO1, FDPS, MVK, HMGCR, MVD and ACAT2. Compared with the normal skin group, the mRNA expression of HMGCS1, DHCR7, MSMO1, FDPS, HMGCR, MVD and ACAT2 in the hypertrophic scar group decreased significantly (P < 0.05), while MVK mRNA expression had no significant change (P > 0.05). Except for MVK, the expression levels of other Hub gene-encoded proteins in normal skin tissue were higher than those in hypertrophic scar tissue (P < 0.05). The top 10 candidate drugs included protein kinase A inhibitor (H-89), serine protease inhibitor (Dabigatran-Etexilate), FLT3 inhibitor (sunitinib), among which resveratrol and β-sitosterol are plant extracts. To conclude, Hub genes closely related to mevalonate metabolism may affect the structure and function of the epidermis by regulating lipid metabolism, which may an important pathogenesis of hypertrophic scar. The small-molecule compounds identified in this study can be used as candidate drugs for the treatment of hypertrophic scar.

Key words: hypertrophic scar, bioinformatics, fibroblast, epidermal stem cell, keratinization, lipid metabolism, mevalonate metabolic pathway, drug prediction

中图分类号: