[1] TRIVEDI PJ, HIRSCHFIELD GM. Recent advances in clinical practice: epidemiology of autoimmune liver diseases. Gut. 2021;70(10):1989-2003.
[2] SUCHER E, SUCHER R, GRADISTANAC T, et al. Autoimmune Hepatitis-Immunologically Triggered Liver Pathogenesis-Diagnostic and Therapeutic Strategies. J Immunol Res. 2019;2019:9437043.
[3] 林秋香,李圣聪,林爱芳,等.自身免疫抗体谱及抗核抗体核型检测在自身免疫性肝病中的诊断价值[J].热带医学杂志,2022,22(11): 1507-1510.
[4] 高璇,张翠丽,曾涛.自身免疫性肝炎的发病机制与治疗现状研究进展[J].肝脏,2022,27(8):928-931.
[5] 胡明礼,王绮夏,马雄.自身免疫性肝炎发病机制进展与临床干预新靶点[J].临床肝胆病杂志,2022,38(4):743-747.
[6] 吴亚彬,刘建华,秦晓松.环状RNA在自身免疫性疾病中的研究进展[J].中国免疫学杂志,2021,37(19):2416-2422.
[7] 周家名,李彬彬,余宏宇.环状RNA在肝纤维化中的调控机制及研究进展[J].临床与实验病理学杂志,2022,38(11):1340-1343.
[8] 赵国云,朱梦迪,孙宇辉.环状RNA在肿瘤免疫中的研究进展[J].临床与病理杂志,2022,42(3):726-730.
[9] LIU Y, LI Z, HAO J, et al. Circular RNAs associated with a mouse model of concanavalin A-induced autoimmune hepatitis: preliminary screening and comprehensive functional analysis. FEBS Open Bio. 2020;10(11): 2350-2362.
[10] FLOREANI A, RESTREPO-JIMÉNEZ P, SECCHI MF, et al. Etiopathogenesis of autoimmune hepatitis. J Autoimmun. 2018;95:133-143.
[11] 马雄,王绮夏,肖潇,等.自身免疫性肝炎诊断和治疗指南(2021)[J].临床肝胆病杂志,2022,38(1):42-49.
[12] WEBB GJ, HIRSCHFIELD GM, KRAWITT EL, et al. Cellular and Molecular Mechanisms of Autoimmune Hepatitis. Annu Rev Pathol. 2018;13:247-292.
[13] TANAKA A. Autoimmune Hepatitis: 2019 Update. Gut Liver. 2020;14(4): 430-438.
[14] 余真君,何泽宝.自身免疫性肝炎研究进展[J].中国免疫学杂志, 2019,35(22):2813-2818.
[15] 李应,庞源源,陈虹余.自身免疫性肝炎临床特点分析及血清相关抗体检测水平分析[J].分子诊断与治疗杂志,2022,14(2):346-349+353.
[16] ZHOU Z, SUN B, HUANG S, et al. Roles of circular RNAs in immune regulation and autoimmune diseases. Cell Death Dis. 2019;10(7):503.
[17] ZENG X, YUAN X, CAI Q, et al. Circular RNA as An Epigenetic Regulator in Chronic Liver Diseases. Cells. 2021;10(8):1945.
[18] 胡锦辉.CircRNA在自身免疫疾病中的研究进展[J].免疫学杂志, 2021,37(7):639-644.
[19] 王雪华,彭辉勇,丁祥梅,等.环状RNA(circRNA)与自身免疫性疾病[J].细胞与分子免疫学杂志,2019,35(10):949-953.
[20] 雷波,玄秀云,樊卫平.CircRNA在自身免疫疾病中的研究进展[J].中国生物制品学杂志,2019,32(3):347-350.
[21] TIEGS G, HENTSCHEL J, WENDEL A. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest. 1992; 90(1):196-203.
[22] ARCIELLO M, GORI M, BALSANO C. Mitochondrial dysfunctions and altered metals homeostasis: new weapons to counteract HCV-related oxidative stress. Oxid Med Cell Longev. 2013;2013:971024.
[23] BELOT A, GOURBEYRE O, PALIN A, et al. Endoplasmic reticulum stress controls iron metabolism through TMPRSS6 repression and hepcidin mRNA stabilization by RNA-binding protein HuR. Haematologica. 2021;106(4):1202-1206.
[24] BHARADWAJ U, KASEMBELI MM, ROBINSON P, et al. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution Pharmacol Rev. 2020;72(2):486-526.
[25] ALCOVER A, ALARCÓN B, DI BARTOLO V. Cell Biology of T Cell Receptor Expression and Regulation. Annu Rev Immunol. 2018;26(4):103-125.
[26] TRIPATHI KP, PICCIRILLO M, GUARRACINO MR. An integrated approach to infer cross-talks between intracellular protein transport and signaling pathways. BMC Bioinformatics. 2018;19(2):58.
[27] LI X, YANG L, CHEN LL. The Biogenesis, Functions, and Challenges of Circular RNAs. Mol Cell. 2018;271(3):428-442.
[28] CHEN X, LEGRAND AJ, CUNNIFFE S, et al. Interplay between base excision repair protein XRCC1 and ALDH2 predicts overall survival in lung and liver cancer patients. Cell Oncol. 2018;41(5):527-539.
[29] ZIÓŁKOWSKA S, CZARNY P, SZEMRAJ J. Impaired base excision repair is related to the pathogenesis of non-alcoholic fatty liver diseas. Acta Universitatis Lodziensis Folia Biologica et Oecologica. 2020;16:5-11.
[30] MATTAR MAM, ZEKRI ARN, HUSSEIN N, et al. Polymorphisms of base-excision repair genes and the hepatocarcinogenesis. Gene. 2018;675: 62-68.
[31] SYN WK, CHOI SS, LIASKOU E, et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology. 2011;53(1):106-115.
[32] TAO S, DUAN R, XU T, et al. Salvianolic acid B inhibits the progression of liver fibrosis in rats via modulation of the Hedgehog signaling pathway. Exp Ther Med. 2022;23(2):116.
[33] HU J, CAO G, WU X, et al. Tetramethylpyrazine Inhibits Activation of Hepatic Stellate Cells through Hedgehog Signaling Pathways In Vitro. Biomed Res Int. 2015;2015:603067.
[34] TANG X, ZHANG L, WEI W. Roles of TRAFs in NF-κB signaling pathways mediated by BAFF. Immunol Lett. 2018;196:113-118.
[35] MOSTAFIZAR M, CORTES-PÉREZ C, SNOW W, et al. Challenges with Methods for Detecting and Studying the Transcription Factor Nuclear Factor Kappa B (NF-κB) in the Central Nervous System. Cells. 2021;10(6):1335.
[36] BARNABEI L, LAPLANTINE E, MBONGO W, et al. NF-κB: At the Borders of Autoimmunity and Inflammation. Front Immunol. 2021;12:716469.
[37] TAN S, LIU X, CHEN L, et al. Fas/FasL mediates NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to drive liver fibrosis. Cell Death Dis. 2021;12(5):474.
[38] WANG Z, SUN X, WANG W, et al. NF-κB-coupled IL17 mediates inflammatory signaling and intestinal inflammation in Artemia sinica. Fish Shellfish Immunol. 2022;128:38-49.
[39] 徐博,田晶,马宁,等.肝损伤动物模型的研究进展[J].中国当代医药,2019,26(14):38-40+44.
[40] 周燕锋,陈龙,刘信禹.自身抗体联合生化指标检测对自身免疫性肝炎的诊断价值[J].深圳中西医结合杂志,2022,32(4):72-74.
[41] 蒋妮,李俊峰,李敏,等.急性重症自身免疫性肝炎治疗研究进展[J].肝脏,2022,27(3):370-373.
[42] ZHANG P, DAI M. CircRNA: a rising star in plant biology. J Genet Genomics. 2022;49(12):1081-1092. |