中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (11): 1767-1771.doi: 10.12307/2024.293

• 组织构建综述 tissue construction review • 上一篇    下一篇

运动调控线粒体动力学变化的研究进展

林建健1,宋  洁2   

  1. 1国际关系学院,北京市  100091;2北京农学院,北京市  100096
  • 收稿日期:2023-03-23 接受日期:2023-05-04 出版日期:2024-04-18 发布日期:2023-07-27
  • 通讯作者: 宋洁,硕士,讲师,北京农学院,北京市 100096
  • 作者简介:林建健,男,广西壮族自治区柳州市人,壮族,2009年北京体育大学毕业,硕士,副教授,主要从事运动与身体机能研究。
  • 基金资助:
    中央高校基本科研业务费专项资金资助(3262023T25),项目负责人:林建健

Research progress in mitochondrial dynamic changes regulated by exercise

Lin Jianjian1, Song Jie2   

  1. 1University of International Relations, Beijing 100091, China; 2Beijing University of Agriculture, Beijing 100096, China
  • Received:2023-03-23 Accepted:2023-05-04 Online:2024-04-18 Published:2023-07-27
  • Contact: Song Jie, Master, Lecturer, Beijing University of Agriculture, Beijing 100096, China
  • About author:Lin Jianjian, Master, Associate professor, University of International Relations, Beijing 100091, China
  • Supported by:
    the Fundamental Research Funds for the Central Universities, No. 3262023T25 (to LJJ)

摘要:


文题释义:

线粒体稳态:线粒体具有高度动态可塑性。正常生理情况下,线粒体形态、结构、数量、体积、质量及功能总是维持相对稳定的动态平衡状态,称为线粒体稳态。
线粒体动力学:线粒体这种控制自身形态、数量、大小和结构的功能,以及在细胞内的分布特征被称为线粒体动力学。线粒体动力学通过调控线粒体形态和重构线粒体网络,使线粒体的质和量发生改变,以便其能够快速响应细胞的能量需求。


背景:线粒体质量控制是一个复杂的过程,该过程涉及到线粒体生物发生、线粒体动力学变化、线粒体自噬三个方面,其中线粒体动力学变化是线粒体生物发生和线粒体自噬的中间环节,线粒体通过动力学变化改善自身质量控制,进而维持线粒体稳定状态。

目的:探究运动影响线粒体动力学变化的分子机制,为运动改善线粒体网络稳态,进而促进功能健康提供理论依据。
方法:利用文献资料法,以“运动,线粒体稳态,线粒体质量控制,线粒体动力学,线粒体融合,线粒体分裂”等为中文关键词检索中国知网(CNKI),百链云图书馆等中文数据库;以“Exercise,Mitochondrial homeostasis,Mitochondrial quality control,Mitochondrial dynamics,Mitochondrial fusion,Mitochondrial fission”等为英文关键词检索PubMed、Web of Science、EBCSO等英文数据库,对最终获取的文献进行筛选、阅读、归纳和总结。

结果与结论:线粒体动力相关蛋白1/2(Drp1/2)负责线粒体分裂过程,线粒体融合蛋白1/2(Mfn1/2)以及视神经萎缩1(Opa1)分别介导线粒体外膜和内膜的融合。运动训练可以通过上调Mfn1/2和Opa1的蛋白表达,同时下调Drp1蛋白表达水平,促进线粒体融合过程,并抑制线粒体分裂来改善线粒体功能状态;一次急性运动影响线粒体动力学变化的研究结论存在争议;另外,运动介导线粒体动力学变化存在组织差异性。

https://orcid.org/0000-0003-0847-4801(林建健)

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

关键词: 运动, 线粒体稳态, 线粒体质量控制, 线粒体动力学, 线粒体分裂, 线粒体融合, 综述

Abstract: BACKGROUND: Mitochondrial quality control is a complex process, which involves three aspects: mitochondrial biogenesis, mitochondrial dynamics change and mitochondrial autophagy, among which mitochondrial dynamics change is the intermediate link between mitochondrial biogenesis and mitochondrial autophagy. Mitochondria can improve their own quality control through dynamics change and then maintain their stable state.
OBJECTIVE: To explore the molecular mechanism underlying the influence of exercise on mitochondrial dynamics, so as to provide theoretical basis for improving mitochondrial network homeostasis and promoting functional health.
METHODS: Using the method of literature review, CNKI, Bailianyun Library, PubMed, Web of Science, EBCSO were searched for relevant literature with the keywords of “Exercise, Mitochondrial Steady State, Mitochondrial Quality Control, Mitochondrial Dynamics, Mitochondrial Fusion and Mitochondrial Division” in Chinese and English. The finally obtained literature was screened, read, and summarized.
RESULTS AND CONCLUSION: Dynamin-related proteins 1/2 are responsible for mitochondrial fission, while mitofusins 1/2 and optic atrophy type 1 mediate the fusion of outer membrane and inner mitochondrial membranes respectively. Exercise training can improve the function of mitochondria by up-regulating the protein expression of mitofusins 1/2 and optic atrophy type 1 and down-regulating the protein expression level of dynamin-related protein 1, promoting mitochondrial fusion and inhibiting mitochondrial fission. The findings that a single acute exercise affects changes in mitochondrial dynamics are controversial. Furthermore, there is tissue variability in exercise-mediated changes in mitochondrial dynamics.

Key words: exercise, mitochondrial homeostasis, mitochondrial quality control, mitochondrial dynamics, mitochondrial fission, mitochondrial fusion, review

中图分类号: