中国组织工程研究 ›› 2023, Vol. 27 ›› Issue (11): 1796-1804.doi: 10.12307/2023.200

• 肌肉肌腱韧带组织构建 tissue construction of the muscle, tendon and ligament • 上一篇    

短期低频脉冲磁场诱导经典瞬时感受器电位通道1对肱二头肌最大自主收缩力与力量耐力的影响

厉中山1,2,王春露3,刘 洁4,杨铁黎5,孔维签6,李 伟6,张秦阳6,陈 松1,车同同7,李志远8,关荣鑫1,白 石6,9   

  1. 1东北大学体育部,辽宁省沈阳市  110819;2福建师范大学体育科学学院,福建省福州市  350117;3北京体育大学冰雪运动学院,北京市  100084;4中国医科大学科学试验研究中心,辽宁省沈阳市  110122;5首都体育学院,北京市  100191;6沈阳工业大学信息科学与工程学院,辽宁省沈阳市  111003;7清华大学体育部,北京市  100084;8浙江大学公共体育与艺术部,浙江省杭州市  310058;9辽宁省磁医学检测与治疗专业技术创新中心,辽宁省沈阳市  110034
  • 收稿日期:2022-06-20 接受日期:2022-06-29 出版日期:2023-04-18 发布日期:2022-09-26
  • 通讯作者: 白石,博士,博士生导师,“翔源学者”特聘教授,沈阳工业大学信息科学与工程学院,辽宁省沈阳市,111003;辽宁省磁医学检测与治疗专业技术创新中心,辽宁省沈阳市,110034
  • 作者简介:厉中山,体育教育训练学在读博士。
  • 基金资助:
    国家自然科学基金青年项目(62001313),项目负责人:白石;中国大学生体育协会一般项目(L202103003),项目负责人:厉中山

Effects of short-term low-frequency pulsed electrical magnetic field-induced classical transient receptor potential channel 1 on maximum voluntary contraction and strength endurance of the biceps brachii

Li Zhongshan1, 2, Wang Chunlu3, Liu Jie4, Yang Tieli5, Kong Weiqian6, Li Wei6, Zhang Qinyang6, Chen Song1, Che Tongtong7, Li Zhiyuan8, Guan Rongxin1, Bai Shi6, 9   

  1. 1Department of Physical Education, Northeastern University; 2School of Sports Science, Fujian Normal University; 3Beijing School of Ice and Snow Sports, Beijing Sport University; 4Scientific Research Center of China Medical University; 5Capital University of Physical Education And Sports; 6School of Information Science and Engineering, Shenyang University of Technology; 7Department of Sports, Tsinghua University; 8Department of Sports, Zhejiang University; 9Liaoning Provincial Magnetic Detection 
  • Received:2022-06-20 Accepted:2022-06-29 Online:2023-04-18 Published:2022-09-26
  • Contact: Bai Shi, PhD, Doctoral supervisor, School of Information Science and Engineering, Shenyang University of Technology, Shenyang 111003, Liaoning Province, China; Liaoning Provincial Magnetic Detection and Treatment Innovation Center, Shenyang 110034, Liaoning Province, China
  • About author:Li Zhongshan, PhD candidate, Department of Physical Education, Northeastern University, Shenyang 110819, Liaoning Province, China; School of Sports Science, Fujian Normal University, Fuzhou 350117, Fujian Province, China
  • Supported by:
    National Natural Science Foundation of China (Youth Project), No. 62001313 (to BS); General Project of Federation of University Sports of China, No. L202103003 (to LZS)

摘要:

文题释义:
磁刺激的作用:可有效调节与改善神经及血液系统水平,对生物膜的离子转运能力发挥影响,并导致一系列生理和生化过程的变化,从而影响细胞和组织生物电活动的相关过程。
脉冲磁场:由脉冲发生装备所产生的脉冲电流在线圈中产生的一种瞬态电磁场。

背景:力量素质是人类进行身体活动的必备要素,短暂的低频脉冲磁场刺激可诱导和激活经典瞬时感受器电位通道1(classical transient receptor potential channel 1,TRPC1),并引发小鼠骨骼肌生长与重塑,从而对肌组织产生一系列生理支持效应,该机制是否会引发人体骨骼肌生理结构与工作能力的变化,并作为一种全新的人体肌力提升手段尚无研究。
目的:选用可激活TRPC 1的特定低频脉冲磁场作为外源性刺激,以观察并验证短期刺激对人体肱二头肌最大自主收缩力与力量耐力的影响。
方法:选择普通成年健康受试者27例,随机分为训练组、照射组、训练+照射组,每组9例。训练组采用抗阻训练,训练+照射组每次接受10 min低频脉冲磁场刺激(强度1.5 mT,频率3 300 Hz)后即刻进行抗阻训练,照射组只进行10 min低频脉冲磁场刺激,试验周期9 d,间隔48 h进行1次训练或照射,为了观察低频脉冲磁场与抗阻训练结合是否会产生增益效果,训练组与训练+照射组在5次训练前后采集最大自主收缩力的肌电信息,照射组只在第1,3,5次进行最大自主收缩力测试,跟踪肌力变化情况。试验后观察3组受试最大自主收缩力值、1次重复最大力量、耐力持续时间、中值频率的变化。
结果与结论:①在试验过程中,所有被试的最大自主收缩力值变化与时间交互效应显著(P < 0.01),随时间的推进均出现显著变化,各组内最大自主收缩力值变化与时间交互显著(P < 0.05),组间无交互效应;②各组被试后测最大自主收缩力值、1次重复最大力量、耐力持续时间、中值频率相比前测均显著提升,其中训练组各指标提升率依次为19%,23%,28%,18%,训练+照射组提升率依次为11%,10%,53%,18%,照射组各指标提升率依次为28%,18%,27%,6%;③训练+照射组的中值频率显著高于照射组(P < 0.05),与训练组无显著性差异;④通过对训练组与训练+照射组每次训练前后的最大自主收缩力肌电均方根振幅平均值对比发现,训练组前2次训练后最大自主收缩力肌电均方根振幅平均值显著下降(P < 0.05)。⑤结果证实:在强度1.5 mT,频率3 300 Hz的脉冲磁场短期刺激方案下,人体肱二头肌最大自主收缩力值和力量耐力显著提升,低频脉冲磁场诱导TRPC1促进肌组织工作能力提升这一机制在人体上得到有效验证;在最大力量提升效果上,低频脉冲磁场刺激与该试验进行传统抗阻训练的两组最终力量水平一致;抗阻训练结合脉冲磁场刺激在训练过程中可体现出更好的抗疲劳能力,以及保持肌力稳定增长的功效,这种结合在训练初期可在相同负荷下使局部肌群更多的运动单位获得训练刺激,提升整体训练效率;在力量耐力提升效果上,低频脉冲磁场刺激可使肌肉等长收缩时间延长,抗疲劳能力提升,低频脉冲磁场刺激结合抗阻训练相比单纯进行低频脉冲磁场刺激可带来更加有效的力量耐力增益效果。

https://orcid.org/0000-0002-9010-609X(厉中山);https://orcid.org/0000-0001-5297-6353(白石)

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

关键词: 脉冲磁场, 经典瞬时感受器电位通道1, TRPC1, 力量素质, 短期效应, 耐力, 肱二头肌, 收缩, 肌力

Abstract: BACKGROUND: Strength quality is an essential element for human physical activity. Short-term low-frequency pulsed electrical magnetic field (PEMF) stimulation can activate classical transient receptor potential channel 1 (TRPC1) and trigger skeletal muscle growth and remodeling in mice, thereby producing a series of physiological support effects on muscle tissue. However, there is no report on whether this mechanism will alter the physiological structure and working ability of human skeletal muscle and act as a new way to improve muscle strength.
OBJECTIVE: To select a specific low-frequency PEMF that can activate TRPC1 as an exogenous stimulus to observe and verify the effect of short-term stimulation on the maximum voluntary contraction force and strength endurance of human biceps brachii.
METHODS: A total of 27 normal adult healthy subjects were selected and randomly divided into exercise group, PEMF group, and exercise+PEMF group, with 9 cases in each group. The training group was subjected to resistance training. The exercise+PEMF group received 10-min low-frequency PEMF stimulation (intensity 1.5 mT, frequency 3300 Hz) immediately after resistance training. The irradiation group only received 10-minute low-frequency PEMF stimulation. Training or irradiation was performed every 48 hours for 9 days. Electromyography information on the maximum voluntary contraction force was collected before and after five training sessions in the exercise group and the exercise+PEMF group, to observe whether the combination of low-frequency PEMF and resistance training will produce a gain effect. In the PEMF group, the maximum voluntary contraction force was tested only at the 1st, 3rd, and 5th sessions to track the changes in muscle strength. The maximum voluntary contraction force, one-repetition maximum force, endurance duration and median frequency were observed in each group.
RESULTS AND CONCLUSION: (1) During the trial, there were significant interaction effects between the changes in maximum voluntary contraction force and time in all the subjects (P < 0.01) as well as in each group as time goes by (P < 0.05). However, there was no interaction effect between groups. (2) There was a significant improvement in the maximum voluntary contraction force, one-repetition maximum force, endurance duration, and median frequency in each group after completion of the trial. These indicators were successively improved by 19%, 23%, 28%, and 18% in the exercise group, 11%, 10%, 53%, and 18% in the exercise+PEMF group, and 28%, 18%, 27%, and 6% in the PEMF group. (3) The median frequency of the exercise+PEMF group was significantly higher than that of the PEMF group (P < 0.05), but there was no significant difference between the exercise+PEMF group and exercise group. (4) Compared with the exercise+PEMF group, the exercise group showed a significant decrease in the root mean square of maximum voluntary contraction after the first two exercise sessions (P < 0.05). (5) All these findings indicate that the short-term PEMF stimulation with intensity of 1.5 mT and frequency of 3 300 Hz can significantly improve the maximum voluntary contraction force and strength endurance of human biceps brachii. That is, low-frequency PEMF can induces TRPC1 to promote the working ability of muscle tissue, which has been effectively verified in human body. Low-frequency PEMF stimulation shares similar effects with conventional resistance training in terms of enhancing the maximum strength. Resistance training combined with PEMF stimulation shows better anti-fatigue ability and stabilizes the increase of muscle strength. This combination can stimulate more motor units of local muscle groups under the same load in the early stage of training and improve the overall training efficiency. In terms of strength endurance improvement, low-frequency PEMF stimulation can prolong isometric muscle contraction time and improve anti-fatigue ability. Compared with simple low-frequency PEMF stimulation, low-frequency PEMF stimulation combined with resistance training is more effective to develop strength endurance.  

Key words: pulsed electrical magnetic field, classical transient receptor potential channel 1, TRPC1, strength quality, short-term effect, endurance, biceps, contraction, muscle strength

中图分类号: