中国组织工程研究 ›› 2022, Vol. 26 ›› Issue (12): 1828-1833.doi: 10.12307/2022.503

• 骨与关节生物力学Bone and joint biomechanics • 上一篇    下一篇

实时动态拉伸下成人肱二头肌、肱三头肌的生物力学特性

黄  涛1,刘晓云1,邓羽平1,李严兵1,钟世镇1,黄文华1,2   

  1. 1南方医科大学基础医学院人体解剖学国家重点学科,广东省医学生物力学重点实验室,广东省医学3D打印应用转化工程技术研究中心,广东省广州市   510515;2南方医科大学第三附属医院,广东省医学3D打印应用转化创新平台,广东省广州市   510000
  • 收稿日期:2021-05-11 修回日期:2021-05-13 接受日期:2021-07-02 出版日期:2022-04-28 发布日期:2021-12-14
  • 通讯作者: 钟世镇,院士,博士生导师,南方医科大学基础医学院人体解剖学国家重点学科,广东省医学生物力学重点实验室,广东省医学3D打印应用转化工程技术研究中心,广东省广州市 510515 黄文华,教授,博士生导师,南方医科大学基础医学院人体解剖学国家重点学科,广东省医学生物力学重点实验室,广东省医学3D打印应用转化工程技术研究中心,广东省广州市 510515;南方医科大学第三附属医院,广东省医学3D打印应用转化创新平台,广东省广州市 510000
  • 作者简介:黄涛,男,1993年生,广东省梅州市人,汉族,南方医科大学在读硕士,主要从事肌肉生物力学方面的研究。
  • 基金资助:
    国家重点研发计划(2017YFC1103400),项目负责人:黄文华;广东省科技计划项目(2016B090917001),项目负责人:黄文华; 广东省科技计划项目(2018B090944002),项目负责人:李严兵;深圳市医疗卫生“三名工程”高层次医学团队(SZSM201612019),项目负责人:黄文华

Biomechanical properties of adult biceps and triceps under real-time dynamic stretching

Huang Tao1, Liu Xiaoyun1, Deng Yuping1, Li Yanbing1, Zhong Shizhen1, Huang Wenhua1, 2   

  1. 1Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China; 2Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Third Affiliated Hospital, Southern Medical University, Guangzhou 510000, Guangdong Province, China
  • Received:2021-05-11 Revised:2021-05-13 Accepted:2021-07-02 Online:2022-04-28 Published:2021-12-14
  • Contact: Zhong Shizhen, Academician, Doctoral supervisor, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China Huang Wenhua, Professor, Doctoral supervisor, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China; Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Third Affiliated Hospital, Southern Medical University, Guangzhou 510000, Guangdong Province, China
  • About author:Huang Tao, Master candidate, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China
  • Supported by:
    National Key Research and Development Program, No. 2017YFC1103400 (to HWH); Guangdong Science and Technology Planning Project, No. 2016B090917001 (to HWH); Guangdong Science and Technology Planning Project, No. 2018B090944002 (to LYB); Shenzhen Medical and Health “Three Famous Project” High-Level Medical Team, No. SZSM201612019 (to HWH)

摘要:

文题释义:
力-长度关系:力-长度和力-速度关系是骨骼肌的2个最重要的性质,其中力-长度关系描述了肌肉的载荷与其长度之间的关系,长度可以由整个肌腱单位、一束纤维,甚至单个肌节表示,力则是在相应长度下肌肉内部所受到的应力大小,在肌肉中,力与长度则呈现出非线性的关系。
线性区:具有黏弹性材料特性的肌肉,在拉伸最初部分为曲线,此阶段肌腱内卷曲的纤维逐渐被拉直;以后拉直的胶原纤维表现出弹性,此段应力应变关系呈线性关系,斜率即为弹性模量;弹性范围外肌肉纤维开始产生微观撕裂,在屈服强度下宏观的破坏变得明显,并最终于强度极限时产生断裂。线性区则是肌肉表现为弹性特性的阶段。

背景:肌肉被动刚度是指导组织工程材料研发、肌肉损伤修复等的基础数据,但以往材料研发等参考的实验数据多来源于动物,有关人体骨骼肌的力学性能研究较少有报道。通过对比分析成人与猪屈伸肌的生物力学特性,为仿生材料研发等提供人体基础数据。
目的:评估实时动态拉伸下成人肱二头肌、肱三头肌的生物力学特性,并与猪前腿屈肌、伸肌做比较,探讨人体材料与动物材料的生物力学差异,为仿生材料研发提供参考。
方法:测试样件取自10只猪的新鲜前腿和6具人类上肢标本,沿肌肉纤维方向解剖获得猪前腿最大的屈肌、伸肌和人类肱二头肌、肱三头肌,并制备成厚10 mm、宽10 mm、长50 mm的试样进行拉伸实验,并在试样表面上标记9个点,采用光学非接触法计算标记点之间的上下距离变化用于测量应变并计算应力。
结果与结论:在拉伸过程中人体肱二头肌、肱三头肌、猪的屈肌和伸肌内部应变呈现不均匀分布;肱三头肌、肱二头肌和屈肌的柯西应力-应变曲线呈现非线性“S”型增长;伸肌的柯西应力-应变曲线呈现线性增长;当拉伸比 > 1.2时,在相同的应变情况下人类肌肉应力均高于猪的肌肉;方差分析F=2 870.346,4种肌肉两两之间差异有显著性意义(P < 0.001)。在实时动态拉伸下,猪前腿最大屈、伸肌与成人肱二头肌、肱三头肌的生物力学特性差异有显著性意义。刚度由大到小依次是肱二头肌、肱三头肌、猪屈肌、猪伸肌,人类和猪的臂部屈肌刚度均大于伸肌。

https://orcid.org/0000-0002-3062-9702 (黄涛) 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 骨骼肌, 生物力学, 非线性, 肱二头肌, 肱三头肌, 人类,

Abstract: BACKGROUND: Passive stiffness of muscle is the basic data to guide the research and development of tissue engineering materials, injury transplantation and repair. However, the previous experimental data, such as material research and development, are mostly from animals, and there are few reports on the mechanical properties of human skeletal muscle. By comparing and analyzing the biomechanical properties of adult and pig flexor and extensor muscles, it provides basic human body data for the development of bionic material.  
OBJECTIVE: To evaluate the biomechanical properties of adult biceps and triceps muscularis under real-time dynamic stretching, and compare them with pig foreleg flexors and extensors to explore the biomechanical differences between human materials and animal materials. It provides reference for research and development of a bionic material.
METHODS:  The test specimens were taken from fresh forelegs of 10 pigs and 6 specimens of human upper limbs, and dissected along the direction of muscle fibers to obtain the largest flexors and extensors of the forelegs of pigs, as well as human biceps and triceps. Samples were sectioned to 10 mm thick, 10 mm wide, 50 mm long and nine black spots were marked on the surface of the sample for the quasi-static tensile testing. The optical non-contact method was adopted to calculate the distance change between the labeled points, measure the strain, and calculate the stress response.  
RESULTS AND CONCLUSION: The internal strain of biceps brachii, triceps brachii, flexor muscle and extensor muscle showed uneven distribution during stretching. Triceps brachii, biceps brachii and flexor Cauchy stress-strain showed a nonlinear “S”-type increase. The Cauchy stress-strain of extensor muscle increased linearly. When draw ratio >1.2, under the same strain, the stress of human muscle was much higher than pig muscle. For analysis of variance F=2 870.346, there was statistical significance between pairings of four kinds of muscles (P < 0.001). Under real-time dynamic stretching, there were statistically significant differences in the biomechanical properties of the maximum flexor and extensor muscles of the forelegs of pigs and adult biceps and triceps. The stiffness in descending order was the biceps brachii, triceps brachii, pig flexor, and pig extensor. The flexor stiffness of human rump is greater than that of extensor muscle.

Key words: skeletal muscle, biomechanics, nonlinear, biceps brachii, triceps brachii, human, pig

中图分类号: